scispace - formally typeset
Journal ArticleDOI

Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design.

TLDR
In this article, a review of the active site and catalytic mechanism of Metallo-β-lactamases (MBLs) is presented, and the success of MBLs in conferring resistance to carbapenems, penicillins, and cephalosporins.
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.

read more

Citations
More filters
Journal ArticleDOI

β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates.

TL;DR: This tutorial-style review of the β-lactam antibiotics provides an overview of their covalent interactions with their target proteins and resistance mechanisms, and introduces the l,d-transpeptidases, a group of bacterial enzymes involved in peptidoglycan synthesis which are also targeted by β- lactams.
Journal ArticleDOI

Metallo-β-lactamases and a tug-of-war for the available zinc at the host–pathogen interface

TL;DR: Metallo-β-lactamases (MBLs) are zinc-dependent hydrolases that inactivate virtually all β lactam antibiotics as discussed by the authors , and metal starvation is a driving force acting on MBL evolution.
Journal ArticleDOI

Deciphering the evolution of metallo-β-lactamases: a journey from the test tube to the bacterial periplasm.

TL;DR: In this paper , the evolutionary traits acquired by different clinical variants of MBLs in conditions mimicking their native environment (the bacterial periplasm) and considering whether they are soluble or membrane-bound proteins are discussed.
References
More filters
Journal ArticleDOI

The Three-Dimensional Structure of VIM-2, a Zn-β-Lactamase from Pseudomonas aeruginosa in Its Reduced and Oxidised Form

TL;DR: The crystal structures of the universally widespread metallo-beta-lactamase (MBL) Verona integron-encoded MBL (VIM)-2 from Pseudomonas aeruginosa have been solved in their native form as well as in an unexpected oxidised form to explain the different activities and antibiotic specificities.
Journal ArticleDOI

Antibiotic recognition by binuclear metallo-beta-lactamases revealed by X-ray crystallography.

TL;DR: The crystal structure of the Stenotrophomonas maltophilia L1 enzyme in complex with the hydrolysis product of the 7alpha-methoxyoxacephem, moxalactam is reported, illustrating how a binuclear zinc site confers upon metallo-beta-lactamases the ability both to recognize and efficiently hydrolyze a wide variety of beta- lactam substrates.
Book ChapterDOI

Alexander Fleming and the discovery of penicillin.

TL;DR: Penicillin permanently changed infectious disease research and therapeutic medicine, it transformed patient expectations and the structures of drug companies, contributed new insights in microbiology and molecular biology, and captured the public imagination and scientific breakthroughs.
Journal ArticleDOI

Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase.

TL;DR: The New Delhi Metallo-β-lactamase (NDM-1) is able to persist under conditions of metal depletion and protein export into OMVs can be targeted, providing possibilities of new antibacterial therapeutic strategies.
Journal ArticleDOI

Complete sequencing of an IncHI1 plasmid encoding the carbapenemase NDM-1, the ArmA 16S RNA methylase and a resistance–nodulation–cell division/multidrug efflux pump

TL;DR: Plasmid p NDM-CIT differed significantly from all known bla(NDM-1)-carrying plasmids identified in Enterobacteriaceae, since it combines the metallo-β-lactamase NDM-1, the 16S RNA methylase ArmA and a cryptic prophage carrying the RND/MDR efflux pump.
Related Papers (5)