scispace - formally typeset
Open AccessJournal ArticleDOI

Mutations in the p53 gene occur in diverse human tumour types

TLDR
It is suggested that most tumours with allelic deletions of chromosome 17p contain p53 point mutations resulting in amino-acid substitutions, and p53 gene mutations are clustered in four 'hot-spots' which exactly coincide with the four most highly conserved regions of the gene.
Abstract
The p53 gene has been a constant source of fascination since its discovery nearly a decade ago. Originally considered to be an oncogene, several convergent lines of research have indicated that the wild-type gene product actually functions as a tumour suppressor gene. For example, expression of the neoplastic phenotype is inhibited, rather than promoted, when rat cells are transfected with the murine wild-type p53 gene together with mutant p53 genes and/or other oncogenes. Moreover, in human tumours, the short arm of chromosome 17 is often deleted. In colorectal cancers, the smallest common region of deletion is centred at 17p13.1; this region harbours the p53 gene, and in two tumours examined in detail, the remaining (non-deleted) p53 alleles were found to contain mutations. This result was provocative because allelic deletion coupled with mutation of the remaining allele is a theoretical hallmark of tumour-suppressor genes. In the present report, we have attempted to determine the generality of this observation; that is, whether tumours with allelic deletions of chromosome 17p contain mutant p53 genes in the allele that is retained. Our results suggest that (1) most tumours with such allelic deletions contain p53 point mutations resulting in amino-acid substitutions, (2) such mutations are not confined to tumours with allelic deletion, but also occur in at least some tumours that have retained both parental 17p alleles, and (3) p53 gene mutations are clustered in four 'hot-spots' which exactly coincide with the four most highly conserved regions of the gene. These results suggest that p53 mutations play a role in the development of many common human malignancies.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A genetic model for colorectal tumorigenesis

TL;DR: A model for the genetic basis of colorectal neoplasia that includes the following salient features is presented, which may be applicable to other common epithelial neoplasms, in which tumors of varying stage are more difficult to study.
Journal ArticleDOI

p53 mutations in human cancers

TL;DR: The p53 mutational spectrum differs among cancers of the colon, lung, esophagus, breast, liver, brain, reticuloendothelial tissues, and hemopoietic tissues as mentioned in this paper.
Journal ArticleDOI

Cancer Cell Cycles

TL;DR: Genetic alterations affecting p16INK4a and cyclin D1, proteins that govern phosphorylation of the retinoblastoma protein and control exit from the G1 phase of the cell cycle, are so frequent in human cancers that inactivation of this pathway may well be necessary for tumor development.
References
More filters
Journal ArticleDOI

Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase

TL;DR: A thermostable DNA polymerase was used in an in vitro DNA amplification procedure, the polymerase chain reaction, which significantly improves the specificity, yield, sensitivity, and length of products that can be amplified.
Journal ArticleDOI

T Antigen Is Bound to a Host Protein in Sv40-Transformed Cells

TL;DR: It is reported here that the T antigen in a line of SV40-transformed mouse cells forms an oligomeric complex with a specific cell coded protein.
Journal ArticleDOI

The p53 proto-oncogene can act as a suppressor of transformation

TL;DR: DNA clones of the wild-type p53 proto-oncogene inhibit the ability of E1Aplus ras or mutant p53 plus ras-activated oncogenes to transform primary rat embryo fibroblasts, suggesting that the p53 prototype can act negatively to block transformation.
Journal ArticleDOI

Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells.

TL;DR: It is concluded that SV40 infection or transformation of mouse cells stimulates the synthesis or enhances the stability of a 54K protein, which appears to be associated with SV40 T antigen in SV40-infected and -transformed cells, and is co-immunoprecipitated by hybridomas sera to SV40 large T antigen.
Related Papers (5)