scispace - formally typeset
D

Dana A. Busam

Researcher at J. Craig Venter Institute

Publications -  24
Citations -  46831

Dana A. Busam is an academic researcher from J. Craig Venter Institute. The author has contributed to research in topics: Genome & Gene density. The author has an hindex of 22, co-authored 24 publications receiving 43530 citations. Previous affiliations of Dana A. Busam include Celera Corporation.

Papers
More filters
Journal ArticleDOI

The sequence of the human genome.

J. Craig Venter, +272 more
- 16 Feb 2001 - 
TL;DR: Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems are indicated.
Journal ArticleDOI

Structure, function and diversity of the healthy human microbiome

Curtis Huttenhower, +253 more
- 14 Jun 2012 - 
TL;DR: The Human Microbiome Project Consortium reported the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome as discussed by the authors.
Journal Article

Structure, function and diversity of the healthy human microbiome

Curtis Huttenhower, +247 more
- 01 Jun 2012 - 
TL;DR: The Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far, finding the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals.
Journal ArticleDOI

The genome sequence of Drosophila melanogaster

Mark Raymond Adams, +194 more
- 24 Mar 2000 - 
TL;DR: The nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome is determined using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map.