scispace - formally typeset
Journal ArticleDOI

Numerical investigation of a PCM-based heat sink with internal fins

TLDR
In this paper, the process of phase change material (PCM) melting in a heat storage unit with internal fins open to air at its top is explored numerically, and the results show how the transient phase change process, expressed in terms of the volume melt fraction of the PCM, depends on the thermal and geometrical parameters of the system, which relate to the temperature difference between the base and the mean melting temperature, and to the thickness and height of the fins.
About
This article is published in International Journal of Heat and Mass Transfer.The article was published on 2005-08-01. It has received 351 citations till now. The article focuses on the topics: Fin & Heat transfer.

read more

Citations
More filters
Journal ArticleDOI

Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency

TL;DR: In this paper, the authors explore how and where phase change materials (PCMs) are used in passive latent heat thermal energy storage (LHTES) systems, and present an overview of how these construction solutions are related to building's energy performance.
Journal ArticleDOI

A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles

TL;DR: In this paper, the authors provide a review on two aspects that are battery thermal model development and thermal management strategies, and discuss thermal effects of lithium-ion batteries in terms of thermal runaway and response under cold temperatures.
Journal ArticleDOI

Performance enhancement in latent heat thermal storage system: A review

TL;DR: In this article, the influence of enhancement techniques on the thermal response of the PCM in terms of phase change rate and amount of latent heat stored/retrieved has been addressed as a main aspect.
Journal ArticleDOI

A review on phase-change materials: Mathematical modeling and simulations

TL;DR: In this article, a review of phase-change materials (PCMs) behavior prediction is presented, based on the first law and on the second law of thermodynamics, with selected results for several configurations, from numerous authors.
Journal ArticleDOI

A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility

TL;DR: In this article, the authors focused on the classification of various paraffins and salt hydrates, and provided an understanding on how to maximize thermal utilization of PCM and how to improve the phase transition rate, thermal conductivity, latent heat storage capacity and thermo-physical stability.
References
More filters
Book

The Properties of Gases and Liquids

TL;DR: In this article, the authors estimate physical properties of pure components and Mixtures and show that the properties of these components and mixtures are similar to those of ideal gases and liquids.
Journal ArticleDOI

Review on thermal energy storage with phase change: materials, heat transfer analysis and applications

TL;DR: In this paper, a review of the history of thermal energy storage with solid-liquid phase change has been carried out and three aspects have been the focus of this review: materials, heat transfer and applications.
Journal ArticleDOI

Low temperature latent heat thermal energy storage: Heat storage materials

TL;DR: In this article, the melting and freezing behavior of various heat-of-fusion storage materials is investigated using the techniques of Thermal Analysis and Differential Scanning Calorimetry.
Journal ArticleDOI

Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal

TL;DR: In this article, the melting of pure gallium in a rectangular cavity has been numerically investigated using the enthalpy-porosity approach for modeling combined convection-diffusion phase change.
Book

Buoyancy-Induced Flows And Transport

TL;DR: In this paper, a general formulation of buoyancy-induced fluid flows is presented, including external Vertical Thermally Induced Flows and Vertical Axisymmetric Flows.
Related Papers (5)