scispace - formally typeset
Open AccessJournal ArticleDOI

On the Einstein-Podolsky-Rosen paradox

John S. Bell
- 01 Nov 1964 - 
- Vol. 1, Iss: 3, pp 195-200
Reads0
Chats0
TLDR
In this article, it was shown that even without such a separability or locality requirement, no hidden variable interpretation of quantum mechanics is possible and that such an interpretation has a grossly nonlocal structure, which is characteristic of any such theory which reproduces exactly the quantum mechanical predictions.
Abstract
THE paradox of Einstein, Podolsky and Rosen [1] was advanced as an argument that quantum mechanics could not be a complete theory but should be supplemented by additional variables These additional variables were to restore to the theory causality and locality [2] In this note that idea will be formulated mathematically and shown to be incompatible with the statistical predictions of quantum mechanics It is the requirement of locality, or more precisely that the result of a measurement on one system be unaffected by operations on a distant system with which it has interacted in the past, that creates the essential difficulty There have been attempts [3] to show that even without such a separability or locality requirement no "hidden variable" interpretation of quantum mechanics is possible These attempts have been examined elsewhere [4] and found wanting Moreover, a hidden variable interpretation of elementary quantum theory [5] has been explicitly constructed That particular interpretation has indeed a grossly nonlocal structure This is characteristic, according to the result to be proved here, of any such theory which reproduces exactly the quantum mechanical predictions

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Compatibility and noncontextuality for sequential measurements

TL;DR: A detailed analysis of experimental imperfections in a recent trapped-ion experiment is presented and several methods to rule out certain hidden variable models that obey a kind of extended noncontextuality are presented.
Journal ArticleDOI

Are superluminal connections necessary

TL;DR: In this article, it was shown that if the statistical predictions of quantum theory are true in general and if the macroscopic world is not radically different from what is observed, then what happens macroscopically in one space-time region must in some cases depend on variables that are controlled by experimenters in far-away, space-like-separated regions.
Journal ArticleDOI

Einstein-Podolsky-Rosen paradox in twin images.

TL;DR: This Letter records, on two separate electron-multiplying charge coupled devices cameras, twin images of the entire flux of spontaneous down-conversion, and reports the highest degree of paradox ever reported and shows that this degree corresponds to the number of independent degrees of freedom, or resolution cells, of the images.
Journal ArticleDOI

Quantum randomness extraction for various levels of characterization of the devices

TL;DR: In this article, the authors present a systematic and efficient approach to quantifying the amount of intrinsic randomness, and show that setups involving ancillas (POVMs, pointer measurements) may not be interesting here, insofar as one may extract randomness from the ancilla rather than from the system under study.
Journal ArticleDOI

Rank two bipartite bound entangled states do not exist

TL;DR: The relation between the rank of a bipartite density matrix and the existence of bound entanglement was explored in this article, where it was shown that any rank n bound entangled state must have support on no more than an n × n Hilbert space.
References
More filters
Journal ArticleDOI

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

TL;DR: Consideration of the problem of making predictions concerning a system on the basis of measurements made on another system that had previously interacted with it leads to the result that one is led to conclude that the description of reality as given by a wave function is not complete.
Journal ArticleDOI

Discussion of Experimental Proof for the Paradox of Einstein, Rosen, and Podolsky

TL;DR: A brief review of the physical significance of the paradox of Einstein, Rosen, and Podolsky is given, and it is shown that it involves a kind of correlation of the properties of distant noninteracting systems, which is quite different from previously known kinds of correlation as discussed by the authors.
Related Papers (5)