scispace - formally typeset
Open AccessJournal ArticleDOI

One-dimensional organic lead halide perovskites with efficient bluish white-light emission.

Reads0
Chats0
TLDR
This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.
Abstract
Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2−]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials. Low-dimensional systems exhibit unique optical properties. Yuanet al. demonstrate one-dimensional organic-inorganic hybrid metal halide perovskites with highly efficient bluish white-light emission due to efficient exciton self-trapping in the quantum-confined structure.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications and Their Optical Properties

TL;DR: In this paper, the authors provide an updated survey of the field of halide perovskite nanocomposite colloidal synthesis, with a main focus on their colloidal synthetic routes to control shape, size and optical properties of the resulting nano-crystals.
Journal ArticleDOI

Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties.

TL;DR: This review aims to provide an up-to-date survey of this fast-moving field and will mainly focus on the different colloidal synthesis approaches that have been developed and on the fundamental optical properties of halide perovskite nanocrystals.
Journal ArticleDOI

Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs

TL;DR: This work demonstrates multicolored narrow bandwidth emission from triangular CQDs with a quantum yield up to 54–72% and synthesizes these dots showing tunable emission color, high fluorescence and a narrow FWHM of only 30 nanometers, which will set the stage for developing next-generation high-performance C QDs-based light-emitting diodes.
Journal ArticleDOI

Dimensional tailoring of hybrid perovskites for photovoltaics

TL;DR: In this article, a review of the state of the art in 2D perovskites is provided, providing an overview of structural and materials engineering aspects and optical and photophysical properties.
References
More filters
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut

TL;DR: The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.
Journal ArticleDOI

Bright light-emitting diodes based on organometal halide perovskite

TL;DR: It is shown, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities, Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities.
Journal ArticleDOI

Low-temperature solution-processed wavelength-tunable perovskites for lasing

TL;DR: It is revealed that solution-processed organic-inorganic halide perovskites (CH3NH3PbX3), which demonstrated huge potential in photovoltaics, also have promising optical gain and may show electrically driven lasing.
Journal ArticleDOI

Metal-halide perovskites for photovoltaic and light-emitting devices

TL;DR: The broad tunability and fabrication methods of these materials, the current understanding of the operation of state-of-the-art solar cells and the properties that have delivered light-emitting diodes and lasers are described.
Related Papers (5)