scispace - formally typeset
Journal ArticleDOI

Optical properties and applications for MoS 2 -Sb 2 Te 3 -MoS 2 heterostructure materials

TLDR
In this article, a new type of heterostructure material with uniformity by employing the magnetron sputtering technique is investigated, which is called MoS2-Sb2Te3-MoS2 heterostructures.
Abstract
Two-dimensional (2D) materials with potential applications in photonic and optoelectronic devices have attracted increasing attention due to their unique structures and captivating properties. However, generation of stable high-energy ultrashort pulses requires further boosting of these materials’ optical properties, such as higher damage threshold and larger modulation depth. Here we investigate a new type of heterostructure material with uniformity by employing the magnetron sputtering technique. Heterostructure materials are synthesized with van der Waals heterostructures consisting of MoS2 and Sb2Te3. The bandgap, carrier mobility, and carrier concentration of the MoS2-Sb2Te3-MoS2 heterostructure materials are calculated theoretically. By using these materials as saturable absorbers (SAs), applications in fiber lasers with Q-switching and mode-locking states are demonstrated experimentally. The modulation depth and damage threshold of SAs are measured to be 64.17% and 14.13  J/cm2, respectively. Both theoretical and experimental results indicate that MoS2-Sb2Te3-MoS2 heterostructure materials have large modulation depth, and can resist high power during the generation of ultrashort pulses. The MoS2-Sb2Te3-MoS2 heterostructure materials have the advantages of low cost, high reliability, and suitability for mass production, and provide a promising solution for the development of 2D-material-based devices with desirable electronic and optoelectronic properties.

read more

Citations
More filters
Journal ArticleDOI

Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect

TL;DR: In this article, the authors mainly review the linear and nonlinear photonic properties of two-dimensional (2D) materials, as well as their nonlinear applications in efficient passive mode-locking devices and ultrafast fiber lasers.
Journal ArticleDOI

Recent progress in ultrafast lasers based on 2D materials as a saturable absorber

TL;DR: In this article, a review of the recent progress in ultrafast laser use of 2D materials as a saturable absorber is presented, where material characteristics, fabrication techniques, and nonlinear properties are also introduced.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Journal ArticleDOI

Projector augmented-wave method

TL;DR: An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way and can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function.
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Related Papers (5)