scispace - formally typeset
Open AccessJournal ArticleDOI

Overproduction of Magnetosomes by Genomic Amplification of Biosynthesis-Related Gene Clusters in a Magnetotactic Bacterium

Reads0
Chats0
TLDR
It is demonstrated that the tuned expression of the mam and mms clusters provides a powerful strategy for the control of magnetosome size and number, thereby setting the stage for high-yield production of tailored magnetic nanoparticles by synthetic biology approaches.
Abstract
Magnetotactic bacteria biosynthesize specific organelles, the magnetosomes, which are membrane-enclosed crystals of a magnetic iron mineral that are aligned in a linear chain. The number and size of magnetosome particles have to be critically controlled to build a sensor sufficiently strong to ensure the efficient alignment of cells within Earth's weak magnetic field while at the same time minimizing the metabolic costs imposed by excessive magnetosome biosynthesis. Apart from their biological function, bacterial magnetosomes have gained considerable interest since they provide a highly useful model for prokaryotic organelle formation and represent biogenic magnetic nanoparticles with exceptional properties. However, potential applications have been hampered by the difficult cultivation of these fastidious bacteria and their poor yields of magnetosomes. In this study, we found that the size and number of magnetosomes within the cell are controlled by many different Mam and Mms proteins. We present a strategy for the overexpression of magnetosome biosynthesis genes in the alphaproteobacterium Magnetospirillum gryphiswaldense by chromosomal multiplication of individual and multiple magnetosome gene clusters via transposition. While stepwise amplification of the mms6 operon resulted in the formation of increasingly larger crystals (increase of similar to 35%), the duplication of all major magnetosome operons (mamGFDC, mamAB, mms6, and mamXY, comprising 29 genes in total) yielded an overproducing strain in which magnetosome numbers were 2.2-fold increased. We demonstrate that the tuned expression of the mam and mms clusters provides a powerful strategy for the control of magnetosome size and number, thereby setting the stage for high-yield production of tailored magnetic nanoparticles by synthetic biology approaches. IMPORTANCE Before our study, it had remained unknown how the upper sizes and numbers of magnetosomes are genetically regulated, and overproduction of magnetosome biosynthesis had not been achieved, owing to the difficulties of large-scale genome engineering in the recalcitrant magnetotactic bacteria. In this study, we established and systematically explored a strategy for the overexpression of magnetosome biosynthesis genes by genomic amplification of single and multiple magnetosome gene clusters via sequential chromosomal insertion by transposition. Our findings also indicate that the expression levels of magnetosome proteins together limit the upper size and number of magnetosomes within the cell. We demonstrate that tuned overexpression of magnetosome gene clusters provides a powerful strategy for the precise control of magnetosome size and number.

read more

Citations
More filters
Journal ArticleDOI

Magnetosome biogenesis in magnetotactic bacteria

TL;DR: This Review discusses the diverse properties of magnetosome biogenesis in other species of magnetotactic bacteria and considers the value of genetically 'magnetizing' non-magnetotacticacteria.
Journal ArticleDOI

Unlocking the Potential of Magnetotactic Bacteria as Magnetic Hyperthermia Agents

TL;DR: It is shown that magnetotactic bacteria of the strain Magnetospirillum gryphiswaldense present high potential as magnetic hyperthermia agents for cancer treatment and fluorescence and electron microscopy images show that these bacteria can be internalized by human lung carcinoma cells A549.
Journal ArticleDOI

Microbe-Mediated Extracellular and Intracellular Mineralization: Environmental, Industrial, and Biotechnological Applications

TL;DR: The different types of microbe‐mediated biomineralization that occur in nature, their mechanisms, as well as their applications are elucidated to create a backdrop for future research.
Journal ArticleDOI

Applications, challenges, and needs for employing synthetic biology beyond the lab.

TL;DR: In this article, the authors analyze recent advances in developing synthetic biological platforms for outside-the-lab scenarios with a focus on three major application spaces: bioproduction, biosensing, and closed-loop therapeutic and probiotic delivery.
Journal ArticleDOI

Bacterial magnetosomes – nature's powerful contribution to MPI tracer research

TL;DR: It is shown that the amplitudes of the magnetosomes' harmonics by far exceed that of Resovist®; the amplitude of the third harmonic is higher by a factor of 7, and is the highest value obtained for iron oxide nanoparticles to date.
References
More filters
Journal ArticleDOI

Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4

TL;DR: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products.
Book

Molecular Cloning: A Laboratory Manual

TL;DR: Molecular Cloning has served as the foundation of technical expertise in labs worldwide for 30 years as mentioned in this paper and has been so popular, or so influential, that no other manual has been more widely used and influential.
Journal Article

Cleavage of structural proteins during the assemble of the head of bacterio-phage T4

U. K. Laemmli
- 01 Jan 1970 - 
TL;DR: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products as mentioned in this paper.
Journal ArticleDOI

Magnetic Nanoparticles in MR Imaging and Drug Delivery

TL;DR: A background on applications of MNPs as MR imaging contrast agents and as carriers for drug delivery and an overview of the recent developments in this area of research are provided.
Journal ArticleDOI

A new logic for DNA engineering using recombination in Escherichia coli

TL;DR: A straightforward way to engineer DNA in E. coli using homologous recombination is described in this article, which uses RecE and RecT and is transferable between different E coli strains.
Related Papers (5)