scispace - formally typeset
Search or ask a question

Showing papers in "Nature Genetics in 1998"



Journal ArticleDOI
TL;DR: The results establish a direct causal relationship between DNA methylation-dependent transcriptional silencing and the modification of chromatin.
Abstract: CpG methylation in vertebrates correlates with alterations in chromatin structure and gene silencing. Differences in DNA-methylation status are associated with imprinting phenomena and carcinogenesis. In Xenopus laevis oocytes, DNA methylation dominantly silences transcription through the assembly of a repressive nucleosomal array. Methylated DNA assembled into chromatin binds the transcriptional repressor MeCP2 which cofractionates with Sin3 and histone deacetylase. Silencing conferred by MeCP2 and methylated DNA can be relieved by inhibition of histone deacetylase, facilitating the remodelling of chromatin and transcriptional activation. These results establish a direct causal relationship between DNA methylation-dependent transcriptional silencing and the modification of chromatin.

2,726 citations


Journal ArticleDOI
TL;DR: The implementation of array CGH is demonstrated to be able to measure copy number with high precision in the human genome, and to analyse clinical specimens by obtaining new information on chromosome 20 aberrations in breast cancer.
Abstract: Gene dosage variations occur in many diseases. In cancer, deletions and copy number increases contribute to alterations in the expression of tumour-suppressor genes and oncogenes, respectively. Developmental abnormalities, such as Down, Prader Willi, Angelman and Cri du Chat syndromes, result from gain or loss of one copy of a chromosome or chromosomal region. Thus, detection and mapping of copy number abnormalities provide an approach for associating aberrations with disease phenotype and for localizing critical genes. Comparative genomic hybridization3(CGH) was developed for genome-wide analysis of DNA sequence copy number in a single experiment. In CGH, differentially labelled total genomic DNA from a 'test' and a 'reference' cell population are cohybridized to normal metaphase chromosomes, using blocking DNA to suppress signals from repetitive sequences. The resulting ratio of the fluorescence intensities at a location on the 'cytogenetic map', provided by the chromosomes, is approximately proportional to the ratio of the copy numbers of the corresponding DNA sequences in the test and reference genomes. CGH has been broadly applied to human and mouse malignancies. The use of metaphase chromosomes, however, limits detection of events involving small regions (of less than 20 Mb) of the genome, resolution of closely spaced aberrations and linking ratio changes to genomic/genetic markers. Therefore, more laborious locus-by-locus techniques have been required for higher resolution studies2,3,4,5. Hybridization to an array of mapped sequences instead of metaphase chromosomes could overcome the limitations of conventional CGH (ref. 6) if adequate performance could be achieved. Copy number would be related to the test/reference fluorescence ratio on the array targets, and genomic resolution could be determined by the map distance between the targets, or by the length of the cloned DNA segments. We describe here our implementation of array CGH. We demonstrate its ability to measure copy number with high precision in the human genome, and to analyse clinical specimens by obtaining new information on chromosome 20 aberrations in breast cancer.

2,317 citations


Journal ArticleDOI
TL;DR: Rolling-circle amplification (RCA) driven by DNA polymerase can replicate circularized oligonucleotide probes with either linear or geometric kinetics under isothermal conditions, making it particularly amenable for the analysis of rare somatic mutations.
Abstract: Rolling-circle amplification (RCA) driven by DNA polymerase can replicate circularized oligonucleotide probes with either linear or geometric kinetics under isothermal conditions. In the presence of two primers, one hybridizing to the + strand, and the other, to the - strand of DNA, a complex pattern of DNA strand displacement ensues that generates 10(9) or more copies of each circle in 90 minutes, enabling detection of point mutations in human genomic DNA. Using a single primer, RCA generates hundreds of tandemly linked copies of a covalently closed circle in a few minutes. If matrix-associated, the DNA product remains bound at the site of synthesis, where it may be tagged, condensed and imaged as a point light source. Linear oligonucleotide probes bound covalently on a glass surface can generate RCA signals, the colour of which indicates the allele status of the target, depending on the outcome of specific, target-directed ligation events. As RCA permits millions of individual probe molecules to be counted and sorted using colour codes, it is particularly amenable for the analysis of rare somatic mutations. RCA also shows promise for the detection of padlock probes bound to single-copy genes in cytological preparations.

1,721 citations


Journal ArticleDOI
TL;DR: Cloning and characterization of a family of novel mammalian DNA methyltransferases (cytosine-5) methyl transferases and their role in apoptosis and cell reprograming are studied.
Abstract: Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases

1,617 citations


Journal ArticleDOI
TL;DR: These findings represent the first examples of a genetic defect within the POMC gene and define a new monogenic endocrine disorder resulting in early–onset obesity, adrenal insufficiency and red hair pigmentation.
Abstract: Sequential cleavage of the precursor protein pre-pro-opiomelanocortin (POMC) generates the melanocortin peptides adrenocorticotrophin (ACTH), melanocyte-stimulating hormones (MSH) alpha, beta and gamma as well as the opioid-receptor ligand beta-endorphin. While a few cases of isolated ACTH deficiency have been reported (OMIM 201400), an inherited POMC defect has not been described so far. Recent studies in animal models elucidated a central role of alpha-MSH in the regulation of food intake by activation of the brain melanocortin-4-receptor (MC4-R; refs 3-5) and the linkage of human obesity to chromosome 2 in close proximity to the POMC locus, led to the proposal of an association of POMC with human obesity. The dual role of alpha-MSH in regulating food intake and influencing hair pigmentation predicts that the phenotype associated with a defect in POMC function would include obesity, alteration in pigmentation and ACTH deficiency. The observation of these symptoms in two probands prompted us to search for mutations within their POMC genes. Patient 1 was found to be a compound heterozygote for two mutations in exon 3 (G7013T, C7133delta) which interfere with appropriate synthesis of ACTH and alpha-MSH. Patient 2 was homozygous for a mutation in exon 2 (C3804A) which abolishes POMC translation. These findings represent the first examples of a genetic defect within the POMC gene and define a new monogenic endocrine disorder resulting in early-onset obesity, adrenal insufficiency and red hair pigmentation.

1,613 citations


Journal ArticleDOI
TL;DR: The role of Tcf-4 in colon cancer was investigated in this paper, where the authors found that Tcf7/2//- mice die shortly after birth from colon cancer.
Abstract: Mutations of the genes encoding APC or beta-catenin in colon carcinoma induce the constitutive formation of nuclear beta-catenin/Tcf-4 complexes, resulting in activated transcription of Tcf target genes. To study the physiological role of Tcf-4 (which is encoded by the Tcf7/2 gene), we disrupted Tcf7/2 by homologous recombination. Tcf7/2-/- mice die shortly after birth. A single histopathological abnormality was observed. An apparently normal transition of intestinal endoderm into epithelium occurred at approximately embryonic day (E) 14.5. However, no proliferative compartments were maintained in the prospective crypt regions between the villi. As a consequence, the neonatal epithelium was composed entirely of differentiated, non-dividing villus cells. We conclude that the genetic program controlled by Tcf-4 maintains the crypt stem cells of the small intestine. The constitutive activity of Tcf-4 in APC-deficient human epithelial cells may contribute to their malignant transformation by maintaining stem-cell characteristics.

1,570 citations


Journal ArticleDOI
TL;DR: The notion that PTEN haploinsufficiency plays a causal role in CD, LDD and BZS pathogenesis is supported, and it is demonstrated that Pten is a tumour suppressor essential for embryonic development.
Abstract: The PTEN gene encodes a dual-specificity phosphatase mutated in a variety of human cancers. PTEN germline mutations are found in three related human autosomal dominant disorders, Cowden disease (CD), Lhermitte-Duclos disease (LDD) and Bannayan-Zonana syndrome (BZS), characterized by tumour susceptibility and developmental defects. To examine the role of PTEN in ontogenesis and tumour suppression, we disrupted mouse Pten by homologous recombination. Pten inactivation resulted in early embryonic lethality. Pten-/- ES cells formed aberrant embryoid bodies and displayed an altered ability to differentiate into endodermal, ectodermal and mesodermal derivatives. Pten+/- mice and chimaeric mice derived from Pten+/- ES cells showed hyperplastic-dysplastic changes in the prostate, skin and colon, which are characteristic of CD, LDD and BZS. They also spontaneously developed germ cell, gonadostromal, thyroid and colon tumours. In addition, Pten inactivation enhanced the ability of ES cells to generate tumours in nude and syngeneic mice, due to increased anchorage-independent growth and aberrant differentiation. These results support the notion that PTEN haploinsufficiency plays a causal role in CD, LDD and BZS pathogenesis, and demonstrate that Pten is a tumour suppressor essential for embryonic development.

1,503 citations


Journal ArticleDOI
TL;DR: The mouse gene for mitochondrial transcription factor A (Tfam), formerly known as m-mtTFA, is disrupted by gene targetting of loxP-sites followed by cre-mediated excision in vivo and is the first mammalian protein demonstrated to regulate mtDNA copy number in vivo.
Abstract: The regulation of mitochondrial DNA (mtDNA) expression is crucial for mitochondrial biogenesis during development and differentiation. We have disrupted the mouse gene for mitochondrial transcription factor A (Tfam; formerly known as m-mtTFA) by gene targetting of loxP-sites followed by cre-mediated excision in vivo. Heterozygous knockout mice exhibit reduced mtDNA copy number and respiratory chain deficiency in heart. Homozygous knockout embryos exhibit a severe mtDNA depletion with abolished oxidative phosphorylation. Mutant embryos proceed through implantation and gastrulation, but die prior to embryonic day (E)10.5. Thus, Tfam is the first mammalian protein demonstrated to regulate mtDNA copy number in vivo and is essential for mitochondrial biogenesis and embryonic development.

1,473 citations


Journal ArticleDOI
TL;DR: The hypothesis that C1q deficiency causes autoimmunity by impairment of the clearance of apoptotic cells is compatible with the hypothesis that a physiological action of the early part of the classical pathway protects against the development of SLE.
Abstract: The complement system plays a paradoxical role in the development and expression of autoimmunity in humans. The activation of complement in systemic lupus erythematosus (SLE) contributes to tissue injury. In contrast, inherited deficiency of classical pathway components, particularly C1q (ref. 1), is powerfully associated with the development of SLE. This leads to the hypothesis that a physiological action of the early part of the classical pathway protects against the development of SLE (ref. 2) and implies that C1q may play a key role in this respect. C1q-deficient (C1qa-/-) mice were generated by gene targeting and monitored for eight months. C1qa-/- mice had increased mortality and higher titres of autoantibodies, compared with strain-matched controls. Of the C1qa-/- mice, 25% had glomerulonephritis with immune deposits and multiple apoptotic cell bodies. Among mice without glomerulonephritis, there were significantly greater numbers of glomerular apoptotic bodies in C1q-deficient mice compared with controls. The phenotype associated with C1q deficiency was modified by background genes. These findings are compatible with the hypothesis that C1q deficiency causes autoimmunity by impairment of the clearance of apoptotic cells.

1,440 citations


Journal ArticleDOI
TL;DR: It is reported that a relatively common Pro12Ala substitution in PPARγ2 is associated with lower body mass index (BMI; P=0.027; 0.015) and improved insulin sensitivity among middle-aged and elderly Finns and among Japanese Americans.
Abstract: The peroxisome proliferator-activated receptor-gamma (PPARgamma) is a transcription factor that has a pivotal role in adipocyte differentiation and expression of adipocyte-specific genes. The PPARgamma1 and gamma2 isoforms result from alternative splicing and have ligand-dependent and -independent activation domains. PPARgamma2 has an additional 28 amino acids at its amino terminus that renders its ligand-independent activation domain 5-10-fold more effective than that of PPARgamma1. Insulin stimulates the ligand-independent activation of PPARgamma1 and gamma2 (ref. 5), however, obesity and nutritional factors only influence the expression of PPARgamma2 in human adipocytes. Here, we report that a relatively common Pro12Ala substitution in PPARgamma2 is associated with lower body mass index (BMI; P=0.027; 0.015) and improved insulin sensitivity among middle-aged and elderly Finns. A significant odds ratio (4.35, P=0.028) for the association of the Pro/Pro genotype with type 2 diabetes was observed among Japanese Americans. The PPARgamma2 Ala allele showed decreased binding affinity to the cognate promoter element and reduced ability to transactivate responsive promoters. These findings suggest that the PPARgamma2 Pro12Ala variant may contribute to the observed variability in BMI and insulin sensitivity in the general population.

Journal ArticleDOI
TL;DR: It is reported that STK15 (also known as BTAK and aurora2), encoding a centrosome-associated kinase, is amplified and overexpressed in multiple human tumour cell types, and is involved in the induction of centrosomes duplication-distribution abnormalities and aneuploidy in mammalian cells.
Abstract: The centrosomes are thought to maintain genomic stability through the establishment of bipolar spindles during cell division, ensuring equal segregation of replicated chromosomes to two daughter cells. Deregulated duplication and distribution of centrosomes have been implicated in chromosome segregation abnormalities, leading to aneuploidy seen in many cancer cell types. Here, we report that STK15 (also known as BTAK and aurora2 ), encoding a centrosome-associated kinase, is amplified and overexpressed in multiple human tumour cell types, and is involved in the induction of centrosome duplication-distribution abnormalities and aneuploidy in mammalian cells. STK15 amplification has been previously detected in breast tumour cell lines 1 and in colon tumours 2 ; here, we report its amplification in approximately 12% of primary breast tumours, as well as in breast, ovarian, colon, prostate, neuroblastoma and cervical cancer cell lines. Additionally, high expression of STK15 mRNA was detected in tumour cell lines without evidence of gene amplification. Ectopic expression of STK15 in mouse NIH 3T3 cells led to the appearance of abnormal centrosome number (amplification) and transformation in vitro . Finally, overexpression of STK15 in near diploid human breast epithelial cells revealed similar centrosome abnormality, as well as induction of aneuploidy. These findings suggest that STK15 is a critical kinase-encoding gene, whose overexpression leads to centrosome amplification, chromosomal instability and transformation in mammalian cells.

Journal ArticleDOI
TL;DR: A straightforward way to engineer DNA in E. coli using homologous recombination is described in this article, which uses RecE and RecT and is transferable between different E coli strains.
Abstract: A straightforward way to engineer DNA in E. coli using homologous recombination is described. The homologous recombination reaction uses RecE and RecT and is transferable between E. coli strains. Several target molecules were manipulated, including high copy plasmids, a large episome and the E. coli chromosome. Sequential steps of homologous or site-specific recombination were used to demonstrate a new logic for engineering DNA, unlimited by the disposition of restriction endonuclease cleavage sites or the size of the target DNA.


Journal ArticleDOI
TL;DR: A sub-microscopic deletion of chromosome 20q13.3 that co-segregates with seizures in a BFNC family is identified, identifying one encoding a novel voltage-gated potassium channel, KCNQ2, which belongs to a new KQT-like class of potassium channels.
Abstract: Idiopathic generalized epilepsies account for about 40% of epilepsy up to age 40 and commonly have a genetic basis. One type is benign familial neonatal convulsions (BFNC), a dominantly inherited disorder of newborns. We have identified a sub-microscopic deletion of chromosome 20q13.3 that co-segregates with seizures in a BFNC family. Characterization of cDNAs spanning the deleted region identified one encoding a novel voltage-gated potassium channel, KCNQ2, which belongs to a new KQT-like class of potassium channels. Five other BFNC probands were shown to have KCNQ2 mutations, including two transmembrane missense mutations, two frameshifts and one splice-site mutation. This finding in BFNC provides additional evidence that defects in potassium channels are involved in the mammalian epilepsy phenotype.

Journal ArticleDOI
TL;DR: A cohort of severely obese children in whom no evidence for a recognized clinical syndrome or a structural hypothalamic cause for their obesity has been found is identified, and one subject who was heterozygous for a 4-bp deletion at codon 211 is likely to result in a non-functional receptor.
Abstract: T he melanocortin-4 receptor (MC4R) is a G-protein coupled, seven-trans-membrane receptor which is highly expressed in the hypothalamus, a region of the brain intimately involved in appetite regulation 1. It is a high-affinity receptor for αMSH, a product of the pro-opiomelanocortin (POMC) gene, which inhibits feeding when administered to rodents 2. Hypothalamic POMC neurons are stimulated by leptin, an adipocyte-specific hormone which regulates appetite and energy expenditure, and constitute a link between leptin and the melanocortin system. Mc4r-deficient mice are hyper-phagic, severely obese, hyperinsulinaemic and show increased linear growth 3. Mice heterozygous for a null Mc4r allele exhibit weight gain intermediate to that seen in wild-type and homozygous mutant litter-mates. Additionally, ectopic expression in the brain of agouti 4 and agouti-related transcript 5 , natural antagonists of the MC4R ligand, αMSH, results in obesity in rodents. In humans, obesity syndromes associated with abnormalities in POMC (ref. 6) and prohormone processing defects involving POMC (ref. 7) have also been described. We have identified a cohort of severely obese children in whom no evidence for a recognized clinical syndrome or a structural hypothalamic cause for their obesity has been found. All are severely obese (mean body mass index (weight/height 2) is 34 kg/m 2) from an early age (<10 years). Sixty-three of these subjects were screened for mutations in MC4R by direct nucleotide sequencing. We identified one subject who was heterozygous for a 4-bp deletion at codon 211 (Fig. 1b). This results in a frameshift that introduces five aberrant amino acids culminating in a stop codon in the region encoding the fifth transmembrane domain, resulting in a truncated protein. As residues at the base of the fifth and sixth transmembrane domains are needed for G-protein binding and activation 8 , this mutation is likely to result in a non-functional receptor. No mutations were found in the 62 other subjects studied. The index patient II.1 (Fig. 1a) is four years old and is the only child from a non-consanguinous union. His weight is 32 kg (>99th centile), height 107 cm (91st cen-tile) and body mass index (BMI) is 28 kg/m 2 (>99th centile). His birthweight was 3.8 kg (50th centile), and progressive weight gain was noted from the age of four months (Fig. 2a). There is no clinical or biochemical evidence of adrenal or thyroid disease, the subject has a normal karyotype and intellectual development is normal. There is a history of hyperphagia …

Journal ArticleDOI
TL;DR: This book aims to provide a history of DNA methylation in the immune system and some of the mechanisms leading to disease, as well as some examples of successful and unsuccessful attempts to correct these problems.
Abstract: 116 nature genetics volume 20 october 1998 Berkeley, California 94720, USA. 2Department of Pathology, University of Washington, Seattle, Washington 98195, USA. 3Department of Radiation Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. Correspondence should be addressed to J.C. (e-mail: jcampisi@lbl.gov). 1. Martin, G.M. Birth Defects 14, 5−39 (1978). 2. Goto, M. Mech. Ageing Dev. 98, 239–254 (1997). 3. Martin, G.M., Sprague, C.A. & Epstein, C.J. Lab. Invest. 23, 86–92 (1970). 4. Salk, D., Bryant, E., Hoehn, H., Johnston, P. & Martin, G.M. Adv. Exp. Bio. Med. 190, 305–311 (1985). 5. Fukuchi, K., Martin, G.M. & Monnat, R.J. Proc. Natl Acad. Sci. USA 86, 5893–5897 (1989). 6. Cheng, R.Z., Murano, S., Kurz, B. & Shmookler-Reis, R.J. Mutat. Res. 237, 259–269 (1990). 7. Yu, C.E. et al. Science 272, 258–262 (1996). 8. German, J. Medicine 72, 393–406 (1993). 9. Main, I.S. Nucleic Acids Res. 25, 3187–3195 (1997). 10. Mushegian, A.R., Bassett, D.E. Jr, Boguski, M.S., Bork, P., & Koonin, E.V. Proc. Natl Acad. Sci. USA 94, 5831–5836 (1997). 11. Gray, M.D. et al. Nature Genet. 17, 100–103 (1997). 12. Linn, S.M., Lloyd, R.S. & Roberts, R.T. Nucleases (Cold Spring Harbor Laboratory Press, New York, 1993). 13. Yamagata, K. et al. Proc. Natl Acad. Sci. USA 95, 8733–8738 (1998). 14. Ogburn, C.E. et al. Hum. Genet. 101, 121–125 (1997). 15. Yan, H., Chen, C.-Y., Kobayashi, R. & Newport, J. Nature Genet. 19, 375–378 (1998).

Journal ArticleDOI
TL;DR: It is concluded that germline mutations in STK11, probably in conjunction with acquired genetic defects of the second allele in somatic cells, cause the manifestations of PJ syndrome.
Abstract: Peutz-Jeghers (PJ) syndrome is an autosomal-dominant disorder characterized by melanocytic macules of the lips, multiple gastrointestinal hamartomatous polyps and an increased risk for various neoplasms, including gastrointestinal cancer. The PJ gene was recently mapped to chromosome 19p13.3 by linkage analysis, with the highest lod score at marker D19S886. In a distance of 190 kb proximal to D19S886, we identified and characterized a novel human gene encoding the serine threonine kinase STK11. In a three-generation PJ family, we found an STK11 allele with a deletion of exons 4 and 5 and an inversion of exons 6 and 7 segregating with the disease. Sequence analysis of STK11 exons in four unrelated PJ patients has identified three nonsense and one acceptor splice site mutations. All five germline mutations are predicted to disrupt the function of the kinase domain. We conclude that germline mutations in STK11, probably in conjunction with acquired genetic defects of the second allele in somatic cells, cause the manifestations of PJ syndrome.

Journal ArticleDOI
TL;DR: These results are the first to identify a defect in a molecular chaperone as a cause for an inherited human muscle disorder, and an R120G missense mutation in CRYAB that co-segregates with the disease phenotype in this family.
Abstract: Desmin-related myopathies (DRM) are inherited neuromuscular disorders characterized by adult onset and delayed accumulation of aggregates of desmin, a protein belonging to the type III intermediate filament family, in the sarcoplasma of skeletal and cardiac muscles. In this paper, we have mapped the locus for DRM in a large French pedigree to a 26-cM interval in chromosome 11q21-23. This region contains the alphaB-crystallin gene (CRYAB), a candidate gene encoding a 20-kD protein that is abundant in lens and is also present in a number of non-ocular tissues, including cardiac and skeletal muscle. AlphaB-crystallin is a member of the small heat shock protein (shsp) family and possesses molecular chaperone activity. We identified an R120G missense mutation in CRYAB that co-segregates with the disease phenotype in this family. Muscle cell lines transfected with the mutant CRYAB cDNA showed intracellular aggregates that contain both desmin and alphaB-crystallin as observed in muscle fibers from DRM patients. These results are the first to identify a defect in a molecular chaperone as a cause for an inherited human muscle disorder.

Journal ArticleDOI
TL;DR: Analysis of embryos carrying different combinations of these alleles revealed requirements for Fgf8 gene function during gastrulation, as well as cardiac, craniofacial, forebrain, midbrain and cerebellar development.
Abstract: We describe a strategy for generating an allelic series of mutations at a given locus that requires the production of only one targetted mouse line. The ‘allelogenic’ mouse line we produced carries a hypomorphic allele of Fgf8, which can be converted to a null allele by mating to ere transgenic animals. The hypomorphic allele can also be reverted to wild-type by mating the allelogenic mice to flp transgenic animals, thereby generating a mouse line suitable for Cre-induced tissue-specific knockout experiments. Analysis of embryos carrying different combinations of these alleles revealed requirements for Fgf8 gene function during gastrulation, as well as cardiac, craniofacial, forebrain, midbrain and cerebellar development.


Journal ArticleDOI
TL;DR: It is shown that co-expression of the mutant ß1 subunit with a brain Na+-channel ß subunit in Xenopus laevis oocytes demonstrates that the mutation interferes with the ability of the subunit to modulate channel-gating kinetics consistent with a loss-of-function allele, developing the theme that idiopathic epilepsies are a family of channelopathies.
Abstract: Febrile seizures affect approximately 3% of all children under six years of age and are by far the most common seizure disorder. A small proportion of children with febrile seizures later develop ongoing epilepsy with afebrile seizures. Segregation analysis suggests the majority of cases have complex inheritance but rare families show apparent autosomal dominant inheritance. Two putative loci have been mapped (FEB1 and FEB2), but specific genes have not yet been identified. We recently described a clinical subset, termed generalized epilepsy with febrile seizures plus (GEFS+), in which many family members have seizures with fever that may persist beyond six years of age or be associated with afebrile generalized seizures. We now report linkage, in another large GEFS+ family, to chromosome region 19q13.1 and identification of a mutation in the voltage-gated sodium (Na+)-channel beta1 subunit gene (SCN1B). The mutation changes a conserved cysteine residue disrupting a putative disulfide bridge which normally maintains an extracellular immunoglobulin-like fold. Co-expression of the mutant beta1 subunit with a brain Na+-channel alpha subunit in Xenopus laevis oocytes demonstrates that the mutation interferes with the ability of the subunit to modulate channel-gating kinetics consistent with a loss-of-function allele. This observation develops the theme that idiopathic epilepsies are a family of channelopathies and raises the possibility of involvement of other Na+-channel subunit genes in febrile seizures and generalized epilepsies with complex inheritance patterns.

Journal ArticleDOI
TL;DR: The structure of the adh1 region appears to be standard relative to the other gene-containing regions of the maize genome, thus suggesting that retrotransposon insertions have increased the size of the corn genome from approximately 1200 Mb to 2400 Mb in the last three million years.
Abstract: Retrotransposons, transposable elements related to animal retroviruses, are found in all eukaryotes investigated and make up the majority of many plant genomes Their ubiquity points to their importance, especially in their contribution to the large-scale structure of complex genomes The nature and frequency of retro-element appearance, activation and amplification are poorly understood in all higher eukaryotes Here we employ a novel approach to determine the insertion dates for 17 of 23 retrotransposons found near the maize adh1 gene, and two others from unlinked sites in the maize genome, by comparison of long terminal repeat (LTR) divergences with the sequence divergence between adh1 in maize and sorghum All retrotransposons examined have inserted within the last six million years, most in the last three million years The structure of the adh1 region appears to be standard relative to the other gene-containing regions of the maize genome, thus suggesting that retrotransposon insertions have increased the size of the maize genome from approximately 1200 Mb to 2400 Mb in the last three million years Furthermore, the results indicate an increased mutation rate in retrotransposons compared with genes

Journal ArticleDOI
TL;DR: Use of the loxCre system of site-specific recombination is described to generate transgenic mouse lines in which different numbers of a transgene are present at the same chromosomal location, thereby eliminating the contribution of position effects and allowing analysis of the effect of copy number alone on transGene silencing.
Abstract: In both plants1–3 and Drosophila melanogastei4,5. expression from a transgenic locus may be silenced when repeated trans-gene copies are arranged as a concatameric array. This repeat-induced gene silencing is frequently manifested as a decrease in the proportion of cells that express the transgene, resulting in a variegated pattern of expression. There is also some indication that, in transgenic mammals, the number of transgene copies within an array can exert a repressive influence on expression, with several mouse studies reporting a decrease in the level of expression per copy as copy number increases6–8. However, because these studies compare different sites of transgene integration as well as arrays with different numbers of copies, the expression levels observed may be subject to varying position effects as well as the influence of the multicopy array. Here we describe use of the loxCre system of site-specific recombination to generate transgenic mouse lines in which different numbers of a transgene are present at the same chromosomal location, thereby eliminating the contribution of position effects and allowing analysis of the effect of copy number alone on transgene silencing. Reduction in copy number results in a marked increase in expression of the transgene and is accompanied by decreased chromatin compaction and decreased methylation at the transgene locus. These findings establish that the presence of multiple homologous copies of a transgene within a concatameric array can have a repressive effect upon gene expression in mammalian systems.

Journal ArticleDOI
TL;DR: KCNQ2, KCNQ3 and undiscovered genes of the same family of K+ channels are strong candidates for other IGEs, and a missense mutation in the critical pore region in perfect co-segregation with the BFNC phenotype is found.
Abstract: Epileptic disorders affect about 20-40 million people worldwide, and 40% of these are idiopathic generalized epilepsies (IGEs; ref. 1). Most of the IGEs that are inherited are complex, multigenic diseases. To address basic mechanisms for epilepsies, we have focused on one well-defined class of IGEs with an autosomal-dominant mode of inheritance: the benign familial neonatal convulsions (BFNC; refs 2,3). Genetic heterogeneity of BFNC has been observed. Two loci, EBN1 and EBN2, have been mapped by linkage analysis to chromosome 20q13 (refs 5,6) and chromosome 8q24 (refs 7,8), respectively. By positional cloning, we recently identified the gene for EBN1 as KCNQ2 (ref. 9). This gene, a voltage-gated potassium channel, based on homology, is a member of the KQT-like family. Here we describe an additional member, KCNQ3. We mapped this new gene to chromosome 8, between markers D8S256 and D8S284 on a radiation hybrid map. We screened KCNQ3 for mutations in the large BFNC family previously linked to chromosome 8q24 in the same marker interval. We found a missense mutation in the critical pore region in perfect co-segregation with the BFNC phenotype. The same conserved amino acid is also mutated in KVLQT1 (KCNQ1) in an LQT patient. KCNQ2, KCNQ3 and undiscovered genes of the same family of K+ channels are strong candidates for other IGEs.

Journal ArticleDOI
TL;DR: It is shown that in mice lacking Crhr1, the medulla of the adrenal gland is atrophied and stress-induced release of adrenocorticotropic hormone (ACTH) and corticosterone is reduced and the homozygous mutants exhibit increased exploratory activity and reduced anxiety-related behaviour under both basal conditions and following alcohol withdrawal.
Abstract: Corticotropin-releasing hormone (CRH) is a potent mediator of endocrine, autonomic, behavioural and immune responses to stress, and has been implicated in the stress-like and other aversive consequences of drug abuse, such as withdrawal from alcohol1,2. Two CRH receptors, Crhr1 and Crhr2, have been identified in the mouse3,4. Crhr1 is highly expressed in the anterior pituitary, neocortex, hippocampus, amygdala and cerebellum, and activation of this receptor stimulates adenylate cyclase5,6. Here we show that in mice lacking Crhr1, the medulla of the adrenal gland is atrophied and stress-induced release of adrenocorticotropic hormone (ACTH) and corticosterone is reduced. The homozygous mutants exhibit increased exploratory activity and reduced anxiety-related behaviour under both basal conditions and following alcohol withdrawal. Our results demonstrate a key role of the Crhr1 receptor in mediating the stress response and anxiety-related behaviour.

Journal ArticleDOI
TL;DR: Disruption of the RPE-based metabolism of all-trans-retinyl esters to 11-cis-retinal thus appears to underlie the Rpe65-/- phenotype, although cone pigment regeneration may be dependent on a separate pathway.
Abstract: Mutation of RPE65 can cause severe blindness from birth or early childhood, and RPE65 protein is associated with retinal pigment epithelium (RPE) vitamin A metabolism. Here, we show that Rpe65-deficient mice exhibit changes in retinal physiology and biochemistry. Outer segment discs of rod photoreceptors in Rpe65-/- mice are disorganized compared with those of Rpe65+/+ and Rpe65+/- mice. Rod function, as measured by electroretinography, is abolished in Rpe65-/- mice, although cone function remains. Rpe65-/- mice lack rhodopsin, but not opsin apoprotein. Furthermore, all-trans-retinyl esters over-accumulate in the RPE of Rpe65-/- mice, whereas 11-cis-retinyl esters are absent. Disruption of the RPE-based metabolism of all-trans-retinyl esters to 11-cis-retinal thus appears to underlie the Rpe65-/- phenotype, although cone pigment regeneration may be dependent on a separate pathway.

Journal ArticleDOI
TL;DR: Data provide evidence that SPGP is the human bile salt export pump (BSEP), and the product of the orthologous rat gene has been shown to be an effective bile acid transporter in vitro.
Abstract: The progressive familial intrahepatic cholestases (PFIC) are a group of inherited disorders with severe cholestatic liver disease from early infancy. A subgroup characterized by normal serum cholesterol and gamma-glutamyltranspeptidase (gammaGT) levels is genetically heterogeneous with loci on chromosomes 2q (PFIC2) and 18q. The phenotype of the PFIC2-linked group is consistent with defective bile acid transport at the hepatocyte canalicular membrane. The PFIC2 gene has now been identified by mutations in a positional candidate, BSEP, which encodes a liver-specific ATP-binding cassette (ABC) transporter, sister of p-glycoprotein (SPGP). The product of the orthologous rat gene has been shown to be an effective bile acid transporter in vitro. These data provide evidence that SPGP is the human bile salt export pump (BSEP).

Journal ArticleDOI
TL;DR: Elevated resistance to oxidative stress suggests that the lifespan extension observed in these flies is due to enhanced RO metabolism, and results show that SOD activity in motorneurons is an important factor in ageing and lifespan determination in Drosophila.
Abstract: Reactive oxygen (RO) has been identified as an important effector in ageing and lifespan determination1,2,3. The specific cell types, however, in which oxidative damage acts to limit lifespan of the whole organism have not been explicitly identified. The association between mutations in the gene encoding the oxygen radical metabolizing enzyme CuZn superoxide dismutase (SOD1) and loss of motorneurons in the brain and spinal cord that occurs in the life-shortening paralytic disease, Familial Amyotrophic Lateral Sclerosis (FALS; ref. 4), suggests that chronic and unrepaired oxidative damage occurring specifically in motor neurons could be a critical causative factor in ageing. To test this hypothesis, we generated transgenic Drosophila which express human SOD1 specifically in adult motorneurons. We show that overexpression of a single gene, SOD1, in a single cell type, the motorneuron, extends normal lifespan by up to 40% and rescues the lifespan of a short-lived Sod null mutant. Elevated resistance to oxidative stress suggests that the lifespan extension observed in these flies is due to enhanced RO metabolism. These results show that SOD activity in motorneurons is an important factor in ageing and lifespan determination in Drosophila.

Journal ArticleDOI
TL;DR: A 3-Mb P1-derived artificial chromosome contig spanning the MM candidate region clarified the order of genetic markers across the MM locus, provided five new polymorphic markers within it and narrowed the locus to approximately 2 Mb.
Abstract: Miyoshi myopathy (MM) is an adult onset, recessive inherited distal muscular dystrophy that we have mapped to human chromosome 2p13. We recently constructed a 3-Mb P1-derived artificial chromosome (PAC) contig spanning the MM candidate region. This clarified the order of genetic markers across the MM locus, provided five new polymorphic markers within it and narrowed the locus to approximately 2 Mb. Five skeletal muscle expressed sequence tags (ESTs) map in this region. We report that one of these is located in a novel, full-length 6.9-kb muscle cDNA, and we designate the corresponding protein 'dysferlin'. We describe nine mutations in the dysferlin gene in nine families; five are predicted to prevent dysferlin expression. Identical mutations in the dysferlin gene can produce more than one myopathy phenotype (MM, limb girdle dystrophy, distal myopathy with anterior tibial onset).