scispace - formally typeset
Open AccessJournal ArticleDOI

Pathways of DNA double-strand break repair during the mammalian cell cycle.

Reads0
Chats0
TLDR
It is shown here that NHEJ-defective hamster cells (CHO mutant V3 cells) have strongly reduced repair in all cell cycle phases after 1 Gy of irradiation, and HR is particularly important in late S/G2, where both pathways contribute to repair and radioresistance.
Abstract
Little is known about the quantitative contributions of nonhomologous end joining (NHEJ) and homologous recombination (HR) to DNA double-strand break (DSB) repair in different cell cycle phases after physiologically relevant doses of ionizing radiation. Using immunofluorescence detection of -H2AX nuclear foci as a novel approach for monitoring the repair of DSBs, we show here that NHEJ-defective hamster cells (CHO mutant V3 cells) have strongly reduced repair in all cell cycle phases after 1 Gy of irradiation. In contrast, HR-defective CHO irs1SF cells have a minor repair defect in G1, greater impairment in S, and a substantial defect in late S/G2. Furthermore, the radiosensitivity of irs1SF cells is slight in G1 but dramatically higher in late S/G2, while V3 cells show high sensitivity throughout the cell cycle. These findings show that NHEJ is important in all cell cycle phases, while HR is particularly important in late S/G2, where both pathways contribute to repair and radioresistance. In contrast to DSBs produced by ionizing radiation, DSBs produced by the replication inhibitor aphidicolin are repaired entirely by HR. irs1SF, but not V3, cells show hypersensitivity to aphidicolin treatment. These data provide the first evaluation of the cell cycle-specific contributions of NHEJ and HR to the repair of radiation-induced versus replication-associated DSBs.

read more

Citations
More filters
Journal ArticleDOI

A Process of Resection-Dependent Nonhomologous End Joining Involving the Goddess Artemis

TL;DR: This work considers the nature of slow DSB repair in G1 and evaluates factors determining whether DSBs are repaired with fast or slow kinetics, and presents a speculative model for Artemis-dependent c-NHEJ and the environment underlying its usage.
Journal ArticleDOI

Farnesyltransferase inhibitors induce DNA damage via reactive oxygen species in human cancer cells.

TL;DR: It is concluded that FTIs induced oxidative DNA damage by inducing ROS and initiated DNA damage responses, including RhoB induction, and there was a complex relationship among FTIs, farnesyltransferase, ROS, and RHoB.
Journal ArticleDOI

Estrogen Effects on the Mammary Gland in Early and Late Life and Breast Cancer Risk.

TL;DR: The existing epidemiological data linking hormone exposure and estrogen receptor-positive breast cancer risk including menarche, menopause, parity, and aberrant environmental hormone exposure are discussed.
Journal ArticleDOI

Deficiency in Homologous Recombination Renders Mammalian Cells More Sensitive to Proton Versus Photon Irradiation

TL;DR: The authors' data indicate a differential quality of DNA damage by proton versus photon irradiation, with a specific requirement for homologous recombination for DNA repair and enhanced cell survival.
Journal ArticleDOI

Connection between histone H2A variants and chromatin remodeling complexes.

TL;DR: This review summarizes the recent developments in the understanding of the role of H2A.Z and H1A.X in the regulation of chromatin structure and function, focusing on their functional links with chromatin modifying and remodeling complexes.
References
More filters
Journal ArticleDOI

DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139

TL;DR: In this paper, a histone H2AX species that has been phosphorylated specifically at serine 139 was found to be a major component of DNA double-stranded break.
Journal ArticleDOI

Genome maintenance mechanisms for preventing cancer

TL;DR: This review summarizes the main DNA caretaking systems and their impact on genome stability and carcinogenesis.
Journal ArticleDOI

A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002).

TL;DR: One such compound, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one, LY294002, completely and specifically abolished PtdIns 3-kinase activity, which may be beneficial in the treatment of proliferative diseases as well as in elucidating the biological role of the kinase in cellular proliferation and growth factor response.
Journal ArticleDOI

Megabase chromatin domains involved in DNA double-strand breaks in vivo.

TL;DR: The results offer direct visual confirmation that γ-H2AX forms en masse at chromosomal sites of DNA double-strand breaks and suggest the possible existence of units of higher order chromatin structure involved in monitoring DNA integrity.
Journal ArticleDOI

Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses

TL;DR: Evidence is presented that foci of γ-H2AX (a phosphorylated histone), detected by immunofluorescence, are quantitatively the same as DSBs and are capable of quantifying the repair of individual D SBs, allowing the investigation of DSB repair after radiation doses as low as 1 mGy, an improvement by several orders of magnitude over current methods.
Related Papers (5)