scispace - formally typeset
Open AccessJournal ArticleDOI

Plant–soil feedbacks: the past, the present and future challenges

TLDR
In this paper, a plant-soil feedback model is proposed to explain succession, invasion, response to climate warming and diversity-productivity relationships in terrestrial ecosystems, and how terrestrial ecosystems respond to global land use and climate change.
Abstract
Summary Plant–soil feedbacks is becoming an important concept for explaining vegetation dynamics, the invasiveness of introduced exotic species in new habitats and how terrestrial ecosystems respond to global land use and climate change. Using a new conceptual model, we show how critical alterations in plant–soil feedback interactions can change the assemblage of plant communities. We highlight recent advances, define terms and identify future challenges in this area of research and discuss how variations in strengths and directions of plant–soil feedbacks can explain succession, invasion, response to climate warming and diversity-productivity relationships. While there has been a rapid increase in understanding the biological, chemical and physical mechanisms and their interdependencies underlying plant–soil feedback interactions, further progress is to be expected from applying new experimental techniques and technologies, linking empirical studies to modelling and field-based studies that can include plant–soil feedback interactions on longer time scales that also include long-term processes such as litter decomposition and mineralization. Significant progress has also been made in analysing consequences of plant–soil feedbacks for biodiversity-functioning relationships, plant fitness and selection. To further integrate plant–soil feedbacks into ecological theory, it will be important to determine where and how observed patterns may be generalized, and how they may influence evolution. Synthesis. Gaining a greater understanding of plant–soil feedbacks and underlying mechanisms is improving our ability to predict consequences of these interactions for plant community composition and productivity under a variety of conditions. Future research will enable better prediction and mitigation of the consequences of human-induced global changes, improve efforts of restoration and conservation and promote sustainable provision of ecosystem services in a rapidly changing world.

read more

Citations
More filters
Journal ArticleDOI

Assembly and ecological function of the root microbiome across angiosperm plant species.

TL;DR: It is demonstrated that variation among 30 angiosperm species, which have diverged for up to 140 million years, affects root bacterial diversity and composition and the causes of variation in root microbiomes are emphasized.
Journal ArticleDOI

Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots

TL;DR: It is demonstrated that agricultural intensification reduces network complexity and the abundance of keystone taxa in the root microbiome, and this is the first study to report mycorrhizal keystoneTaxa for agroecosystems.
Journal ArticleDOI

Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics

TL;DR: A large-scale study of North American trees reveals how different soil-associated fungi can either help or hinder tree growth, and suggests mycorrhizal type could be an important contributor to population regulation and community structure in temperate forests.
Journal ArticleDOI

Direct and indirect effects of climate change on soil microbial and soil microbial‐plant interactions: What lies ahead?

TL;DR: How climatic change affects soil microbes and soil microbe-plant interactions directly and indirectly is explored, and what ramifications changes in these interactions may have on the composition and function of ecosystems are discussed.
References
More filters
Journal ArticleDOI

Ecological responses to recent climate change.

TL;DR: A review of the ecological impacts of recent climate change exposes a coherent pattern of ecological change across systems, from polar terrestrial to tropical marine environments.
Journal ArticleDOI

A global analysis of root distributions for terrestrial biomes

TL;DR: Rooting patterns for terrestrial biomes are analyzed and distributions for various plant functional groups are compared and the merits and possible shortcomings of the analysis are discussed in the context of root biomass and root functioning.
Journal ArticleDOI

Microbial stress‐response physiology and its implications for ecosystem function

TL;DR: It is suggested that more effectively integrating microbial ecology into ecosystem ecology will require a more complete integration of microbial physiological ecology, population biology, and process ecology.
Journal ArticleDOI

Functioning of mycorrhizal associations along the mutualism–parasitism continuum*

TL;DR: A greater understanding of how mycorrhizas function in complex natural systems is a prerequisite to managing them in agriculture, forestry, and restoration.
Related Papers (5)