scispace - formally typeset
Open AccessJournal ArticleDOI

Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis

Reads0
Chats0
TLDR
PC-PALM is an effective tool with broad applicability for analysis of protein heterogeneity and function, adaptable to other single-molecule strategies, and shows dramatic changes in glycosylphosphatidylinositol (GPI)-anchored protein arrangement under varying perturbations.
Abstract
Photoactivated localization microscopy (PALM) is a powerful approach for investigating protein organization, yet tools for quantitative, spatial analysis of PALM datasets are largely missing. Combining pair-correlation analysis with PALM (PC-PALM), we provide a method to analyze complex patterns of protein organization across the plasma membrane without determination of absolute protein numbers. The approach uses an algorithm to distinguish a single protein with multiple appearances from clusters of proteins. This enables quantification of different parameters of spatial organization, including the presence of protein clusters, their size, density and abundance in the plasma membrane. Using this method, we demonstrate distinct nanoscale organization of plasma-membrane proteins with different membrane anchoring and lipid partitioning characteristics in COS-7 cells, and show dramatic changes in glycosylphosphatidylinositol (GPI)-anchored protein arrangement under varying perturbations. PC-PALM is thus an effective tool with broad applicability for analysis of protein heterogeneity and function, adaptable to other single-molecule strategies.

read more

Citations
More filters
Journal ArticleDOI

The mystery of membrane organization: composition, regulation and roles of lipid rafts

TL;DR: The membrane raft hypothesis formalized a physicochemical principle for a subtype of lateral membrane heterogeneity, in which the preferential associations between cholesterol and saturated lipids drive the formation of relatively packed membrane domains that selectively recruit certain lipids and proteins.
Journal ArticleDOI

Fluorescence nanoscopy in cell biology

TL;DR: In this Review,luorescence nanoscopy uniquely combines minimally invasive optical access to the internal nanoscale structure and dynamics of cells and tissues with molecular detection specificity and the labelling of individual molecules to enable their visualization has emerged as a central challenge.
Journal ArticleDOI

Measuring image resolution in optical nanoscopy.

TL;DR: This work introduces a measure based on Fourier ring correlation (FRC) that can be computed directly from an image and demonstrates its validity and benefits on two-dimensional (2D) and 3D localization microscopy images of tubulin and actin filaments.
Journal ArticleDOI

Super-resolution microscopy with DNA-PAINT

TL;DR: A protocol is presented for the creation of DNA origami test samples, in situ sample preparation, multiplexed data acquisition, data simulation, super-resolution image reconstruction and post-processing such as drift correction, molecule counting (qPAINT) and particle averaging, designed to be modular.
Journal ArticleDOI

Dynamic regulation of transcriptional states by chromatin and transcription factors

TL;DR: This Review discusses emerging concepts regarding the function of regulatory elements in living cells and the involvement of these dynamic and stochastic processes in the evolution of fluctuating transcriptional activity states that are now commonly reported in eukaryotic systems.
References
More filters
Journal ArticleDOI

Imaging intracellular fluorescent proteins at nanometer resolution.

TL;DR: This work introduced a method for optically imaging intracellular proteins at nanometer spatial resolution and used this method to image specific target proteins in thin sections of lysosomes and mitochondria and in fixed whole cells to image retroviral protein Gag at the plasma membrane.
Journal ArticleDOI

Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).

TL;DR: A high-resolution fluorescence microscopy method based on high-accuracy localization of photoswitchable fluorophores that can, in principle, reach molecular-scale resolution is developed.
Journal ArticleDOI

Lipid Rafts As a Membrane-Organizing Principle

TL;DR: The evidence for how this principle combines the potential for sphingolipid-cholesterol self-assembly with protein specificity to selectively focus membrane bioactivity is reviewed.
Journal ArticleDOI

Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy

TL;DR: A new method for fluorescence imaging has been developed that can obtain spatial distributions of large numbers of fluorescent molecules on length scales shorter than the classical diffraction limit, and suggests a means to address a significant number of biological questions that had previously been limited by microscope resolution.
Journal ArticleDOI

Direct observation of the nanoscale dynamics of membrane lipids in a living cell

TL;DR: The ability of stimulated emission depletion (STED) far-field fluorescence nanoscopy to detect single diffusing (lipid) molecules in nanosized areas in the plasma membrane of living cells is demonstrated.
Related Papers (5)