scispace - formally typeset
Open AccessJournal ArticleDOI

The mystery of membrane organization: composition, regulation and roles of lipid rafts

Reads0
Chats0
TLDR
The membrane raft hypothesis formalized a physicochemical principle for a subtype of lateral membrane heterogeneity, in which the preferential associations between cholesterol and saturated lipids drive the formation of relatively packed membrane domains that selectively recruit certain lipids and proteins.
Abstract
Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large number of studies have focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, in which the preferential associations between cholesterol and saturated lipids drive the formation of relatively packed (or ordered) membrane domains that selectively recruit certain lipids and proteins. Recent studies have yielded new insights into this mechanism and its relevance in vivo, owing primarily to the development of improved biochemical and biophysical technologies.

read more

Citations
More filters
Journal ArticleDOI

Understanding the diversity of membrane lipid composition.

TL;DR: This work has shown that a high lipid diversity is universal in eukaryotes and is seen from the scale of a membrane leaflet to that of a whole organism, highlighting its importance and suggesting that membrane lipids fulfil many functions.
Journal ArticleDOI

Mechanisms and regulation of cholesterol homeostasis.

TL;DR: This Review discusses the latest advances regarding how each of the four parts of cholesterol metabolism is executed and regulated and how these pathways function in a concerted manner to maintain cholesterol homeostasis.
Journal ArticleDOI

Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology.

TL;DR: It is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Journal ArticleDOI

Computational Modeling of Realistic Cell Membranes

TL;DR: The state of the art in the field of realistic membrane simulations is reviewed and the current limitations and challenges ahead are discussed.
References
More filters
Journal ArticleDOI

Functional rafts in cell membranes

Kai Simons, +1 more
- 05 Jun 1997 - 
TL;DR: A new aspect of cell membrane structure is presented, based on the dynamic clustering of sphingolipids and cholesterol to form rafts that move within the fluid bilayer that function as platforms for the attachment of proteins when membranes are moved around inside the cell and during signal transduction.
Journal ArticleDOI

The fluid mosaic model of the structure of cell membranes.

TL;DR: Results strongly indicate that the bivalent antibodies produce an aggregation of the surface immunoglobulin molecules in the plane of the membrane, which can occur only if the immunoglOBulin molecules are free to diffuse in the membrane.
Journal ArticleDOI

CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein.

TL;DR: CD14, a differentiation antigen of monocytes, was found to bind complexes of LPS and LBP, and blockade of CD14 with monoclonal antibodies prevented synthesis of TNF-alpha by whole blood incubated with LPS.
Journal ArticleDOI

Lipid Rafts As a Membrane-Organizing Principle

TL;DR: The evidence for how this principle combines the potential for sphingolipid-cholesterol self-assembly with protein specificity to selectively focus membrane bioactivity is reviewed.
Journal ArticleDOI

Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface

TL;DR: It is shown that a protein with a glycosylphosphatidyl inositol (GPI) anchor can be recovered from lysates of epithelial cells in a low density, detergent-insoluble form, supporting the model proposed by Simons and colleagues for sorting of certain membrane proteins to the apical surface after intracellular association with glycosphingolipids.
Related Papers (5)