scispace - formally typeset
Open AccessJournal ArticleDOI

Protein Composition and Electron Microscopy Structure of Affinity-Purified Human Spliceosomal B Complexes Isolated under Physiological Conditions

TLDR
Novel insights are provided into the composition and structure of the spliceosome just prior to its catalytic activation and a potential role in activation for proteins recruited at this stage is suggested.
Abstract
The spliceosomal B complex is the substrate that undergoes catalytic activation leading to catalysis of pre-mRNA splicing. Previous characterization of this complex was performed in the presence of heparin, which dissociates less stably associated components. To obtain a more comprehensive inventory of the B complex proteome, we isolated this complex under low-stringency conditions using two independent methods. MS2 affinity-selected B complexes supported splicing when incubated in nuclear extract depleted of snRNPs. Mass spectrometry identified over 110 proteins in both independently purified B complex preparations, including 50 non-snRNP proteins not previously found in the spliceosomal A complex. Unexpectedly, the heteromeric hPrp19/CDC5 complex and 10 additional hPrp19/CDC5-related proteins were detected, indicating that they are recruited prior to spliceosome activation. Electron microscopy studies revealed that MS2 affinity-selected B complexes exhibit a rhombic shape with a maximum dimension of 420 A and are structurally more homogeneous than B complexes treated with heparin. These data provide novel insights into the composition and structure of the spliceosome just prior to its catalytic activation and suggest a potential role in activation for proteins recruited at this stage. Furthermore, the spliceosomal complexes isolated here are well suited for complementation studies with purified proteins to dissect factor requirements for spliceosome activation and splicing catalysis. Pre-mRNA splicing is catalyzed by a large RNP molecular machine, termed the spliceosome, which consists of the U1, U2, U4/U6, and U5 snRNPs and a multitude of non-snRNP proteins (reviewed in reference 48). The active site(s) responsible for the catalysis of pre-mRNA splicing is not preformed but, rather, is created anew during the highly dynamic process of spliceosome assembly. The latter is an ordered process during which several intermediates, termed E, A, B, and B*, can be detected in vitro (reviewed in reference 48). Assembly is initiated by the ATP-independent interaction of the U1 snRNP with the conserved 5 splice site of the pre-mRNA, forming the E complex. At this stage, the U2 snRNP is loosely associated with the pre-mRNA (11). In a subsequent step requiring ATP, the U2 snRNP stably interacts with the pre-mRNA’s branch site, leading to formation of the A complex (also called the prespliceosome). Spliceosome assembly culminates with the formation of the spliceosomal B complex, during which the preformed U4/U6.U5 tri-snRNP particle interacts with the A complex. The B complex thus contains a full set of U snRNAs in a precatalytic state. It subsequently undergoes major rearrangements, including destabilization or loss of the U1 and U4 snRNPs, leading to catalytic activation and the formation of the so-called activated spliceosome (B* complex).

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The Spliceosome: Design Principles of a Dynamic RNP Machine

TL;DR: The spliceosome exhibits exceptional compositional and structural dynamics that are exploited during substrate-dependent complex assembly, catalytic activation, and active site remodeling in the pre-mRNAs.
Journal ArticleDOI

Spliceosome structure and function.

TL;DR: The extensive interplay of RNA and proteins in aligning the pre-mRNA's reactive groups, and the presence of both RNA and protein at the core of the splicing machinery, suggest that the spliceosome is an RNP enzyme, but elucidation of the precise nature of its active site awaits the generation of a high-resolution structure of its RNP core.
Journal ArticleDOI

Mechanisms and Regulation of Alternative Pre-mRNA Splicing

TL;DR: These studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states.
Journal ArticleDOI

Molecular Architecture of the Human Pre-mRNA 3′ Processing Complex

TL;DR: The purification and subsequent proteomic and structural characterization of human mRNA 3' processing complexes are reported, revealing the complexity and molecular architecture of the pre-mRNA 3'processing complex.
Journal ArticleDOI

Isolation of an active step I spliceosome and composition of its RNP core.

TL;DR: Insight is provided into the spliceosome’s catalytic RNP domain and a central role for the aforementioned proteins in sustaining its catalytically active structure is indicated.
References
More filters
Journal ArticleDOI

Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei

TL;DR: A procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters, including tRNA and Ad 2 VA, is developed.
Journal ArticleDOI

Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels

TL;DR: Silver staining allows a substantial shortening of sample preparation time and may, therefore, be preferable over Coomassie staining, and this work removes a major obstacle to the low-level sequence analysis of proteins separated on polyacrylamide gels.
Journal ArticleDOI

A new generation of the IMAGIC image processing system.

TL;DR: IMAGIC's novel angular reconstitution approach allows for the rapid determination of three-dimensional structures of uncrystallized molecules to high resolution.
Journal ArticleDOI

Large-Scale Proteomic Analysis of the Human Spliceosome

TL;DR: This investigation provides the most detailed inventory of human spliceosome-associated factors to date, and the data indicate a number of interesting links coordinating splicing with other steps in the gene expression pathway.
Journal ArticleDOI

Comprehensive proteomic analysis of the human spliceosome.

TL;DR: The spliceosome is identified as the most complex cellular machine so far characterized, containing at least 30 proteins with known or putative roles in gene expression steps other than splicing, and its components comprise all previously known splicing factors and 58 newly identified components.
Related Papers (5)