scispace - formally typeset
Journal ArticleDOI

Raman coherence in a circuit quantum electrodynamics lambda system

TLDR
In this paper, the combined qubit-cavity states of a superconducting transmon qubit in a three-dimensional copper cavity with two microwave drives are established, two legs of which are defined by a dipole transition and a two-photon transition.
Abstract
Atomic three-level systems dressed by two coherent electromagnetic fields can exhibit coherent population trapping and electromagnetically induced transparency (EIT) due to quantum interference. By addressing the combined qubit-cavity states of a superconducting transmon qubit in a three-dimensional copper cavity with two microwave drives we establish an effective system, two legs of which are defined by a dipole transition and a two-photon transition. This circuit-based system allows the observation of three-microwave-photon Raman coherence effects, including coherent population trapping and EIT, which are demonstrated here with both steady-state spectroscopic techniques and time-domain measurements. By sending Gaussian microwave pulses through the cavity in the EIT regime, a negative group velocity of the pulse is observed with the peak of the pulse exiting the cavity 9.4 μs before entering.

read more

Citations
More filters
Journal ArticleDOI

Microwave photonics with superconducting quantum circuits

TL;DR: In the past 20 years, impressive progress has been made both experimentally and theoretically in superconducting quantum circuits, which provide a platform for manipulating microwave photons as mentioned in this paper, and many higher-order effects, unusual and less familiar in traditional cavity quantum electrodynamics with natural atoms, have been experimentally observed.
Journal ArticleDOI

Microwave photonics with superconducting quantum circuits

TL;DR: In the past 20 years, impressive progress has been made both experimentally and theoretically in superconducting quantum circuits, which provide a platform for manipulating microwave photons as mentioned in this paper, and many higher-order effects, unusual and less familiar in traditional cavity quantum electrodynamics with natural atoms, have been experimentally observed.
Journal ArticleDOI

Colloquium: Strongly interacting photons in one-dimensional continuum

TL;DR: In this paper, the topic of photons interacting strongly when confined to a one-dimensional geometry is discussed from experimental and theoretical perspectives, and it is shown that it is possible to make them interact by altering environmental conditions, for instance, in the interior of certain materials or by squeezing them in confined geometries.
Journal ArticleDOI

Plug-and-Play Approach to Nonadiabatic Geometric Quantum Gates.

TL;DR: It is shown that nonadiabatic geometric gates can be constructed in an extensible way, called NHQC+, for maintaining both flexibility and robustness against certain types of noises.
References
More filters
Journal ArticleDOI

On the Generators of Quantum Dynamical Semigroups

TL;DR: In this paper, the notion of a quantum dynamical semigroup is defined using the concept of a completely positive map and an explicit form of a bounded generator of such a semigroup onB(ℋ) is derived.
Journal ArticleDOI

Comparison of quantum and semiclassical radiation theories with application to the beam maser

TL;DR: In this article, it was shown that the semiclassical theory, when extended to take into account both the effect of the field on the molecules and the effects of the molecules on the field, reproduces the same laws of energy exchange and coherence properties as the quantized field theory, even in the limit of one or a few quanta in the field mode.
Journal ArticleDOI

Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics

TL;DR: It is shown that the strong coupling regime can be attained in a solid-state system, and the concept of circuit quantum electrodynamics opens many new possibilities for studying the strong interaction of light and matter.
Journal ArticleDOI

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation

TL;DR: In this paper, a realizable architecture using one-dimensional transmission line resonators was proposed to reach the strong coupling limit of cavity quantum electrodynamics in superconducting electrical circuits.
Journal ArticleDOI

Observation of electromagnetically induced transparency.

TL;DR: In this paper, the authors report the first demonstration of a technique by which an optically thick medium may be rendered transparent by applying a temporally smooth coupling laser between a bound state of an atom and the upper state of the transition which is to be made transparent.
Related Papers (5)