scispace - formally typeset
Journal ArticleDOI

Realizing Over 13% Efficiency in Green-Solvent-Processed Nonfullerene Organic Solar Cells Enabled by 1,3,4-Thiadiazole-Based Wide-Bandgap Copolymers

Reads0
Chats0
TLDR
Two novel wide-bandgap copolymers, PBDT-TDZ and PBDTS- TDZ, are developed based on 1,3,4-thiadiazole (TDZ) and benzo[1,2-b:4,5-b']dithiophene (BDT) building blocks, which exhibit the stronger optical absorption, lower-lying HOMO level, and higher crystallinity.
Abstract
Two novel wide-bandgap copolymers, PBDT-TDZ and PBDTS-TDZ, are developed based on 1,3,4-thiadiazole (TDZ) and benzo[1,2-b:4,5-b']dithiophene (BDT) building blocks. These copolymers exhibit wide bandgaps over 2.07 eV and low-lying highest occupied molecular orbital (HOMO) levels below -5.35 eV, which match well with the typical low-bandgap acceptor of ITIC, resulting in a good complementary absorption from 300 to 900 nm and a low HOMO level offset (≤0.13 eV). Compared to PBDT-TDZ, PBDTS-TDZ with alkylthio side chains exhibits the stronger optical absorption, lower-lying HOMO level, and higher crystallinity. By using a single green solvent of o-xylene, PBDTS-TDZ:ITIC devices exhibit a large open-circuit voltage (Voc ) up to 1.10 eV and an extremely low energy loss (Eloss ) of 0.48 eV. At the same time, the desirable high short-circuit current density (Jsc ) of 17.78 mA cm-2 and fill factor of 65.4% are also obtained, giving rise to a high power conversion efficiency (PCE) of 12.80% without any additive and post-treatment. When adopting a homotandem device architecture, the PCE is further improved to 13.35% (certified as 13.19%) with a much larger Voc of 2.13 V, which is the best value for any type of homotandem organic solar cells reported so far.

read more

Citations
More filters
Journal ArticleDOI

Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors

TL;DR: The field of non-fullerene organic solar cells has experienced rapid development during the past few years, mainly driven by the development of novel non-fullylerene acceptors and matching donor semiconductors.
Journal ArticleDOI

Over 14% Efficiency in Organic Solar Cells Enabled by Chlorinated Nonfullerene Small-Molecule Acceptors.

TL;DR: Chlorination demonstrates effective ability in enhancing the device performance and facile synthesis route, which both deserve further exploitation in the modification of photovoltaic materials.
Journal ArticleDOI

A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells.

TL;DR: A new benzodithiophene unit is developed and subtle side-chain modulation of the ester greatly influences the aggregation effects and molecular packing of polymer PDTB-EF-T, demonstrating the great potential of the DTBDT-EF unit for future organic photovoltaic applications.
Journal ArticleDOI

Single-Junction Polymer Solar Cells with 16.35% Efficiency Enabled by a Platinum(II) Complexation Strategy

TL;DR: The bulky benzene ring on the platinum(II) complex increases the steric hindrance along the polymer main chain, inhibits the polymer aggregation strength, regulates the phase separation, optimizes the morphology, and thus improves the efficiency to 16.35% is the highest efficiency for single-junction PSCs reported so far.
Journal ArticleDOI

Eco-Compatible Solvent-Processed Organic Photovoltaic Cells with Over 16% Efficiency.

TL;DR: The results indicate that the simple modification of the side chain can be used to tune the processability of active layer materials and thus make it more applicable for the mass production with environmentally benign solvents.
References
More filters
Journal ArticleDOI

Bulk heterojunction solar cells with internal quantum efficiency approaching 100

TL;DR: In this paper, a polymer solar cell based on a bulk hetereojunction design with an internal quantum efficiency of over 90% across the visible spectrum (425 nm to 575 nm) is reported.
Journal ArticleDOI

Polymer–Fullerene Composite Solar Cells

TL;DR: Polymer-based organic photovoltaic systems hold the promise for a cost-effective, lightweight solar energy conversion platform, which could benefit from simple solution processing of the active layer.
Journal ArticleDOI

An electron acceptor challenging fullerenes for efficient polymer solar cells.

TL;DR: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized.
Journal ArticleDOI

Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells.

TL;DR: The uncovered aggregation and design rules yield three high-efficiency (>10%) donor polymers and will allow further synthetic advances and matching of both the polymer and fullerene materials, potentially leading to significantly improved performance and increased design flexibility.
Journal ArticleDOI

Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.

TL;DR: This Account discusses the basic requirements and scientific issues in the molecular design of high efficiency photovoltaic molecules, and summarizes recent progress in electronic energy level engineering and absorption spectral broadening of the donor and acceptor photvoltaic materials by my research group and others.
Related Papers (5)