scispace - formally typeset
Open AccessJournal ArticleDOI

Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide

TLDR
Several promising strategies, including surface engineering, chemical modification, nanostructured catalysts, and composite materials, are proposed to facilitate the future development of CO2 electroreduction.
Abstract
In view of the climate changes caused by the continuously rising levels of atmospheric CO2 , advanced technologies associated with CO2 conversion are highly desirable. In recent decades, electrochemical reduction of CO2 has been extensively studied since it can reduce CO2 to value-added chemicals and fuels. Considering the sluggish reaction kinetics of the CO2 molecule, efficient and robust electrocatalysts are required to promote this conversion reaction. Here, recent progress and opportunities in inorganic heterogeneous electrocatalysts for CO2 reduction are discussed, from the viewpoint of both experimental and computational aspects. Based on elemental composition, the inorganic catalysts presented here are classified into four groups: metals, transition-metal oxides, transition-metal chalcogenides, and carbon-based materials. However, despite encouraging accomplishments made in this area, substantial advances in CO2 electrolysis are still needed to meet the criteria for practical applications. Therefore, in the last part, several promising strategies, including surface engineering, chemical modification, nanostructured catalysts, and composite materials, are proposed to facilitate the future development of CO2 electroreduction.

read more

Citations
More filters
Journal ArticleDOI

Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels.

TL;DR: Various cocatalysts, such as the biomimetic, metal-based,Metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area.
Journal ArticleDOI

Emerging Two-Dimensional Nanomaterials for Electrocatalysis

TL;DR: The fundamental relationships between electronic structure, adsorption energy, and apparent activity for a wide variety of 2D electrocatalysts are described with the goal of providing a better understanding of these emerging nanomaterials at the atomic level.
Journal ArticleDOI

Ionic Exchange of Metal–Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO2

TL;DR: This work adopts metal-organic frameworks (MOFs) to assist the preparation of a catalyst containing single Ni sites for efficient electroreduction of CO2 and presents some guidelines for the rational design and accurate modulation of nanostructured catalysts at the atomic scale.
Journal ArticleDOI

Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO.

TL;DR: Electrochemical data suggest that the Fe3+ sites derive their superior activity from faster CO2 adsorption and weaker CO absorption than that of conventional Fe2+ sites, whereas non–precious metal catalysts have shown low to modest activity.
References
More filters
Journal ArticleDOI

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Journal ArticleDOI

Opportunities and challenges for a sustainable energy future

TL;DR: This Perspective provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.
Journal ArticleDOI

A review of electrode materials for electrochemical supercapacitors

TL;DR: Two important future research directions are indicated and summarized, based on results published in the literature: the development of composite and nanostructured ES materials to overcome the major challenge posed by the low energy density.
Journal ArticleDOI

Powering the planet: Chemical challenges in solar energy utilization

TL;DR: Solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year, and if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user.
Journal ArticleDOI

Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.

TL;DR: It is reported that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells.
Related Papers (5)