scispace - formally typeset
Journal ArticleDOI

Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium.

Reads0
Chats0
TLDR
This critical Review focuses on the evolution of the hybrid ion capacitor (HIC) from its early embodiments to its modern form, focusing on the key outstanding scientific and technological questions that necessitate further in-depth study.
Abstract
In this critical Review we focus on the evolution of the hybrid ion capacitor (HIC) from its early embodiments to its modern form, focusing on the key outstanding scientific and technological questions that necessitate further in-depth study. It may be argued that HICs began as aqueous systems, based on a Faradaic oxide positive electrode (e.g., Co3O4, RuOx) and an activated carbon ion-adsorption negative electrode. In these early embodiments HICs were meant to compete directly with electrical double layer capacitors (EDLCs), rather than with the much higher energy secondary batteries. The HIC design then evolved to be based on a wide voltage (∼4.2 V) carbonate-based battery electrolyte, using an insertion titanium oxide compound anode (Li4Ti5O12, LixTi5O12) versus a Li ion adsorption porous carbon cathode. The modern Na and Li architectures contain a diverse range of nanostructured materials in both electrodes, including TiO2, Li7Ti5O12, Li4Ti5O12, Na6LiTi5O12, Na2Ti3O7, graphene, hard carbon, soft carbo...

read more

Citations
More filters
Journal ArticleDOI

Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles.

TL;DR: The fundamentals of HER are summarized and the recent state-of-the-art advances in the low-cost and high-performance catalysts based on noble and non-noble metals, as well as metal-free HER electrocatalysts are reviewed.

High-Power Lithium Batteries from Functionalized Carbon Nanotube Electrodes

TL;DR: Layer-by-layer techniques are used to assemble an electrode that consists of additive-free, densely packed and functionalized multiwalled carbon nanotubes, which had a gravimetric energy approximately 5 times higher than conventional electrochemical capacitors and power delivery approximately 10 timesHigher than conventional lithium-ion batteries.
Journal ArticleDOI

Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials

TL;DR: The purpose of this Review is to examine the fundamental development of the concept of pseudocapacitance and how it came to prominence in electrochemical energy storage as well as to describe new classes of materials whose electrochemicalEnergy storage behavior can be described as pseudOCapacitive.
Journal ArticleDOI

Towards establishing standard performance metrics for batteries, supercapacitors and beyond.

TL;DR: An overview of the energy storage devices from conventional capacitors to supercapacitors to hybrid systems and ultimately to batteries is provided, although the focus is kept on capacitive and hybrid energy storage systems.
Journal ArticleDOI

Recent progress in carbon-based materials for supercapacitor electrodes: a review

TL;DR: A review of recent progress in carbon materials for supercapacitor electrodes is presented in this paper, where the characteristics and fabrication methods of these materials and their performance as capacitor electrodes are discussed.
References
More filters
Journal ArticleDOI

High-performance lithium battery anodes using silicon nanowires

TL;DR: The theoretical charge capacity for silicon nanowire battery electrodes is achieved and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.
Journal ArticleDOI

Nonaqueous liquid electrolytes for lithium-based rechargeable batteries.

TL;DR: The phytochemical properties of Lithium Hexafluoroarsenate and its Derivatives are as follows: 2.2.1.
Journal ArticleDOI

Lithium Batteries and Cathode Materials

TL;DR: This paper will describe lithium batteries in more detail, building an overall foundation for the papers that follow which describe specific components in some depth and usually with an emphasis on the materials behavior.
Journal ArticleDOI

Where Do Batteries End and Supercapacitors Begin

TL;DR: Electrochemical measurements can distinguish between different types of energy storage materials and their underlying mechanisms, used to recover power in cars and electric mass transit vehicles that would otherwise lose braking energy as heat.
Journal ArticleDOI

Reviving the lithium metal anode for high-energy batteries

TL;DR: The current understanding on Li anodes is summarized, the recent key progress in materials design and advanced characterization techniques are highlighted, and the opportunities and possible directions for future development ofLi anodes in applications are discussed.
Related Papers (5)