scispace - formally typeset
Journal ArticleDOI: 10.1021/ACS.LANGMUIR.1C00065

Silica Capsules Templated from Metal–Organic Frameworks for Enzyme Immobilization and Catalysis

02 Mar 2021-Langmuir (American Chemical Society (ACS))-Vol. 37, Iss: 10, pp 3166-3172
Abstract: Inspired by the unique biological microenvironments of eukaryotic cells, hollow capsules are promising to immobilize enzymes due to their advantages for physical protection and improved activity of enzymes. Herein, we report a facile method to fabricate silica (SiO2) capsules using zeolitic imidazole framework-8 nanoparticles (ZIF-8 NPs) as templates for enzyme immobilization and catalysis. Enzyme-encapsulated SiO2 capsules are obtained by encapsulation of enzymes in ZIF-8 NPs and subsequent coating of silica layers, followed by the removal of templates in a mild condition (i.e., ethylenediaminetetraacetic acid (EDTA) solution). The enzyme (i.e., horseradish peroxidase, HRP) activity in SiO2 capsules is improved more than 15 times compared to that of enzyme-loaded ZIF-8 NPs. Enzymes in SiO2 capsules maintain a high relative activity after being subjected to high temperature, enzymolysis, and recycling compared to free enzymes. In addition, multienzymes (e.g., glucose oxidase and HRP) can also be coencapsulated within SiO2 capsules to show a reaction with a high cascade catalytic efficacy. This work provides a versatile strategy for enzyme immobilization and protection with potential applications in biocatalysis.

... read more

Topics: Immobilized enzyme (59%), Biocatalysis (51%)
Citations
  More

8 results found


Journal ArticleDOI: 10.1016/J.IJBIOMAC.2021.07.064
Abstract: Co-immobilization of multi-enzymes has emerged as a promising concept to design and signify bio-catalysis engineering. Undoubtedly, the existence and importance of basic immobilization methods such as encapsulation, covalent binding, cross-linking, or even simple adsorption cannot be ignored as they are the core of advanced co-immobilization strategies. Different strategies have been developed and deployed to green the twenty-first century bio-catalysis. Moreover, co-immobilization of multi-enzymes has successfully resolved the limitations of individual enzyme loaded constructs. With an added value of this advanced bio-catalysis engineering platform, designing, and fabricating co-immobilized enzymes loaded nanostructure carriers to perform a particular set of reactions with high catalytic turnover is of supreme interest. Herein, we spotlight the emergence of co-immobilization strategies by bringing multi-enzymes together with various types of nanocarriers to expand the bio-catalysis scope. Following a brief introduction, the first part of the review focuses on multienzyme co-immobilization strategies, i.e., random co-immobilization, compartmentalization, and positional co-immobilization. The second part comprehensively covers four major categories of nanocarriers, i.e., carbon based nanocarriers, polymer based nanocarriers, silica-based nanocarriers, and metal-based nanocarriers along with their particular examples. In each section, several critical factors that can affect the performance and successful deployment of co-immobilization of enzymes are given in this work.

... read more

Topics: Nanocarriers (58%)

7 Citations


Open accessJournal ArticleDOI: 10.3390/CATAL11101211
09 Oct 2021-Catalysts
Abstract: Enzymes are the highly efficient biocatalyst in modern biotechnological industries. Due to the fragile property exposed to the external stimulus, the application of enzymes is highly limited. The immobilized enzyme by polymer has become a research hotspot to empower enzymes with more extraordinary properties and broader usage. Compared with free enzyme, polymer immobilized enzymes improve thermal and operational stability in harsh environments, such as extreme pH, temperature and concentration. Furthermore, good reusability is also highly expected. The first part of this study reviews the three primary immobilization methods: physical adsorption, covalent binding and entrapment, with their advantages and drawbacks. The second part of this paper includes some polymer applications and their derivatives in the immobilization of enzymes.

... read more

Topics: Immobilized enzyme (60%)

1 Citations


Journal ArticleDOI: 10.1021/ACS.LANGMUIR.1C01821
Qian Wang1, Zhiliang Gao1, Qi-Zhi Zhong1, Qi-Zhi Zhong2  +5 moreInstitutions (2)
13 Sep 2021-Langmuir
Abstract: Nanoengineered capsules encapsulated with functional cargos (e.g., enzymes) are of interest for various applications including catalysis, bioreactions, sensing, and drug delivery. Herein, we report a facile strategy to engineer enzyme-encapsulated metal-phenolic network (MPN) capsules using enzyme-loaded zeolitic imidazolate framework nanoparticles (ZIF-8 NPs) as templates, which can be removed in a mild condition (e.g., ethylenediaminetetraacetic acid (EDTA) solution). The capsule size (from 250 nm to 1 μm) and thickness (from 9.8 to 33.7 nm) are well controlled via varying the template size and coating time, respectively. Importantly, MPN capsules encapsulated with enzymes (i.e., glucose oxidase) can trigger the intracellular cascade reaction via the exhaustion of glucose to produce H2O2 and subsequently generate toxic hydroxyl radicals (•OH) based on the Fenton reaction via the reaction between H2O2 and iron ions in MPN coatings. The intracellular cascade reaction for the generation of •OH is efficient to inhibit cancer cell viability, which is promising for the application in chemodynamic therapy.

... read more

Topics: Cascade reaction (52%)

1 Citations



Journal ArticleDOI: 10.1039/D1BM01005K
Xiaoli Liu1, Michelle M. T. Jansman1, Wengang Li2, Paul J. Kempen1  +2 moreInstitutions (3)
Abstract: Rapid haemorrhage control to restore tissue oxygenation is essential in order to improve survival following traumatic injury. To this end, the current clinical standard relies on the timely administration of donor blood. However, limited availability and portability, special storage requirements, the need for blood type matching and risks of disease transmission result in severe logistical challenges, impeding the use of donor blood in pre-hospital scenarios. Therefore, great effort has been devoted to the development of haemoglobin (Hb)-based oxygen carriers (HBOCs), which could be used as a “bridge” to maintain tissue oxygenation until hospital admission. HBOCs hold the potential to diminish the deleterious effects of acute bleeding and associated mortality rates. We recently presented a novel HBOC, consisting of Hb-loaded metal organic framework (MOF)-based nanoparticles (NPs) (MOFHb-NPs), and demonstrated its ability to reversibly bind and release oxygen. However, a long standing challenge when developing HBOCs is that, over time, Hb oxidizes to non-functional methaemoglobin (metHb). Herein, we address this challenge by modifying the surface of the as-prepared MOFHb-NPs with an antioxidant polydopamine (PDA) coating. The conditions promoting the greatest PDA deposition are first optimized. Next, the ability of the resulting PDA-coated MOFHb-NPs to scavenge important reactive oxygen species is demonstrated both in a test tube and in the presence of two relevant cell lines (i.e., macrophages and endothelial cells). Importantly, this antioxidant protection translates into minimal metHb conversion.

... read more


References
  More

43 results found


Journal ArticleDOI: 10.1038/35051736
11 Jan 2001-Nature
Abstract: The use of biocatalysis for industrial synthetic chemistry is on the verge of significant growth. Biocatalytic processes can now be carried out in organic solvents as well as aqueous environments, so that apolar organic compounds as well as water-soluble compounds can be modified selectively and efficiently with enzymes and biocatalytically active cells. As the use of biocatalysis for industrial chemical synthesis becomes easier, several chemical companies have begun to increase significantly the number and sophistication of the biocatalytic processes used in their synthesis operations.

... read more

Topics: Biocatalysis (54%)

1,991 Citations


Journal ArticleDOI: 10.1038/NATURE11117
10 May 2012-Nature
Abstract: Over the past ten years, scientific and technological advances have established biocatalysis as a practical and environmentally friendly alternative to traditional metallo- and organocatalysis in chemical synthesis, both in the laboratory and on an industrial scale. Key advances in DNA sequencing and gene synthesis are at the base of tremendous progress in tailoring biocatalysts by protein engineering and design, and the ability to reorganize enzymes into new biosynthetic pathways. To highlight these achievements, here we discuss applications of protein-engineered biocatalysts ranging from commodity chemicals to advanced pharmaceutical intermediates that use enzyme catalysis as a key step.

... read more

1,719 Citations


Open accessJournal ArticleDOI: 10.1038/NCOMMS8240
Kang Liang1, Raffaele Ricco1, Cara M. Doherty1, Mark J. Styles1  +7 moreInstitutions (4)
Abstract: Robust biomacromolecules could be used for a wide range of biotechnological applications. Here the authors report a biomimetic mineralization process, in which biomolecules are encapsulated within metal-organic frameworks, and their stability is subsequently increased without significant bioactivity loss.

... read more

660 Citations


Journal ArticleDOI: 10.1002/ADMA.201305319
Yongsheng Li1, Jianlin Shi2, Jianlin Shi1Institutions (2)
01 May 2014-Advanced Materials
Abstract: Hollow-structured mesoporous materials (HMMs), as a kind of mesoporous material with unique morphology, have been of great interest in the past decade because of the subtle combination of the hollow architecture with the mesoporous nanostructure. Benefitting from the merits of low density, large void space, large specific surface area, and, especially, the good biocompatibility, HMMs present promising application prospects in various fields, such as adsorption and storage, confined catalysis when catalytically active species are incorporated in the core and/or shell, controlled drug release, targeted drug delivery, and simultaneous diagnosis and therapy of cancers when the surface and/or core of the HMMs are functionalized with functional ligands and/or nanoparticles, and so on. In this review, recent progress in the design, synthesis, functionalization, and applications of hollow mesoporous materials are discussed. Two main synthetic strategies, soft-templating and hard-templating routes, are broadly sorted and described in detail. Progress in the main application aspects of HMMs, such as adsorption and storage, catalysis, and biomedicine, are also discussed in detail in this article, in terms of the unique features of the combined large void space in the core and the mesoporous network in the shell. Functionalization of the core and pore/outer surfaces with functional organic groups and/or nanoparticles, and their performance, are summarized in this article. Finally, an outlook of their prospects and challenges in terms of their controlled synthesis and scaled application is presented.

... read more

572 Citations


Journal ArticleDOI: 10.1021/NL5026419
Fengjiao Lyu1, Yifei Zhang1, Richard N. Zare2, Jun Ge1  +1 moreInstitutions (2)
15 Sep 2014-Nano Letters
Abstract: Protein molecules were directly embedded in metal–organic frameworks (MOFs) by a coprecipitation method. The protein molecules majorly embedded on the surface region of MOFs display high biological activities. As a demonstration of the power of such materials, the resulting Cyt c embedded in ZIF-8 showed a 10-fold increase in peroxidase activity compared to free Cyt c in solution and thus gave convenient, fast, and highly sensitive detection of trace amounts of explosive organic peroxides in solution.

... read more

534 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20218