scispace - formally typeset
Journal ArticleDOI

Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters.

TLDR
Silicon nanowire (SiNW)-based solar cells on glass substrates have been fabricated by wet electroless chemical etching (using silver nitrate and hydrofluoric acid) of 2.7 microm multicrystalline p(+)nn(+) doped silicon layers thereby creating the nanowires structure.
Abstract
Silicon nanowire (SiNW)-based solar cells on glass substrates have been fabricated by wet electroless chemical etching (using silver nitrate and hydrofluoric acid) of 2.7 μm multicrystalline p+nn+ doped silicon layers thereby creating the nanowire structure. Low reflectance ( 90% at 500 nm) have been measured. The highest open-circuit voltage (Voc) and short-circuit current density (Jsc) for AM1.5 illumination were 450 mV and 40 mA/cm2, respectively at a maximum power conversion efficiency of 4.4%.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Metal-Assisted Chemical Etching of Silicon: A Review

TL;DR: This article presents an overview of the essential aspects in the fabrication of silicon and some silicon/germanium nanostructures by metal-assisted chemical etching, and introduces templates based on nanosphere lithography, anodic aluminum oxide masks, interference lithographic, and block-copolymer masks.
Journal ArticleDOI

Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications

TL;DR: The observed absorption enhancement and collection efficiency enable a cell geometry that not only uses 1/100th the material of traditional wafer-based devices, but also may offer increased photovoltaic efficiency owing to an effective optical concentration of up to 20 times.
Journal ArticleDOI

Silicon nanostructures for photonics and photovoltaics

TL;DR: Focusing on two application areas, namely communications and photovoltaics, the state of the art in each field is assessed and the challenges that need to be overcome are highlighted to make silicon a truly high-performing photonic material.
Journal ArticleDOI

Nanowire Solar Cells

TL;DR: In this paper, the authors describe nanowire solar cell synthesis and fabrication, important characterization techniques unique to Nanowire systems, and advantages of the nanouire geometry. But they do not discuss the potential advantages of using nanowires over planar wafer-based or thin-film solar cells.
Journal ArticleDOI

Silicon Nanowires for Photovoltaic Solar Energy Conversion

TL;DR: The recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells are reviewed.
References
More filters
Journal ArticleDOI

Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices

TL;DR: The assembly of functional nanoscale devices from indium phosphide nanowires, the electrical properties of which are controlled by selective doping are reported, and electric-field-directed assembly can be used to create highly integrated device arrays from nanowire building blocks.
Journal ArticleDOI

Functional nanoscale electronic devices assembled using silicon nanowire building blocks.

TL;DR: The facile assembly of key electronic device elements from well-defined nanoscale building blocks may represent a step toward a "bottom-up" paradigm for electronics manufacturing.
Journal ArticleDOI

Coaxial silicon nanowires as solar cells and nanoelectronic power sources

TL;DR: These coaxial silicon nanowire photovoltaic elements provide a new nanoscale test bed for studies of photoinduced energy/charge transport and artificial photosynthesis, and might find general usage as elements for powering ultralow-power electronics and diverse nanosystems.
Journal ArticleDOI

Single-nanowire electrically driven lasers

TL;DR: In this paper, the authors investigate the feasibility of achieving electrically driven lasing from individual nanowires and show that these structures can function as Fabry-Perot optical cavities with mode spacing inversely related to the nanowire length.
Related Papers (5)