scispace - formally typeset
Journal ArticleDOI

State of the Art and Prospects for Halide Perovskite Nanocrystals.

Amrita Dey, +78 more
- 27 Jul 2021 - 
- Vol. 15, Iss: 7, pp 10775-10981
TLDR
A comprehensive review of metal-halide perovskite nanocrystals can be found in this article, where researchers having expertise in different fields (chemistry, physics, and device engineering) have joined together to provide a state-of-the-art overview and future prospects of metalhalide nanocrystal research.
Abstract
Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.

read more

Citations
More filters
Journal ArticleDOI

Colloidal Metal‐Halide Perovskite Nanoplatelets: Thickness‐Controlled Synthesis, Properties, and Application in Light‐Emitting Diodes

TL;DR: In this paper , the state-of-the-art in colloidal metal-halide perovskite nanocrystals (MHP NCs) is discussed, and the challenges associated with their thickness-controlled synthesis, environmental and thermal stability, and their application in making efficient LEDs are discussed.
Journal ArticleDOI

Controlling the nucleation and growth kinetics of lead halide perovskite quantum dots

TL;DR: In this paper , a room-temperature synthesis of monodisperse, isolable, spheroidal APbBr3 QDs with size tunable from 3 to > 13 nanometers was reported.
Journal ArticleDOI

Dual-Band-Tunable White-Light Emission from Bi3+/Te4+ Emitters in Perovskite-Derivative Cs2SnCl6 Microcrystals.

TL;DR: These findings provide not only new insights into the excited-state dynamics of Bi3+ and Te4+ in Cs2SnCl6, but also a general approach to achieve single-composition white-light emitters based on lead-free metal halides through ns2-metal ion co-doping.
Journal ArticleDOI

What Happens When Halide Perovskites Meet with Water?

TL;DR: In this paper , the degradation of halide perovskites upon water exposure has been intensively studied, resulting in chemical insights into key processes, including hydration, phase transformation, decomposition, and dissolution.
References
More filters
Journal ArticleDOI

High-Performance Flexible Broadband Photodetector Based on Organolead Halide Perovskite

TL;DR: In this article, the first organolead halide perovskite based broadband photodetector is demonstrated, with CH3NH3PbI3 film deposited on flexible ITO coated substrate.
Journal ArticleDOI

An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs

TL;DR: This review summarizes the mechanisms of intrinsic- and extrinsic-environment-induced decomposition of perovskite quantum dots and some possible solutions to improve the stability of PQDs together with suggestions for further improving the performance of pc-LEDs as well as the device lifetime.
Journal ArticleDOI

Efficient and Stable White LEDs with Silica-Coated Inorganic Perovskite Quantum Dots

TL;DR: A white light-emitting diode (0.33, 0.33) is fabricated using perovskite quantum dot/silica composites and is shown to have greatly improved stability.
Journal ArticleDOI

Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals

TL;DR: It is shown that luminescence from Sn-based perovskite nanocrystals occurs on pico- to nanosecond time scales via two spectrally distinct radiative decay processes, which are assigned to band-to-band emission and radiative recombination at shallow intrinsic defect sites.
Related Papers (5)