scispace - formally typeset
Journal ArticleDOI

State of the Art and Prospects for Halide Perovskite Nanocrystals.

Amrita Dey, +78 more
- 27 Jul 2021 - 
- Vol. 15, Iss: 7, pp 10775-10981
TLDR
A comprehensive review of metal-halide perovskite nanocrystals can be found in this article, where researchers having expertise in different fields (chemistry, physics, and device engineering) have joined together to provide a state-of-the-art overview and future prospects of metalhalide nanocrystal research.
Abstract
Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.

read more

Citations
More filters
Journal ArticleDOI

Colloidal Metal‐Halide Perovskite Nanoplatelets: Thickness‐Controlled Synthesis, Properties, and Application in Light‐Emitting Diodes

TL;DR: In this paper , the state-of-the-art in colloidal metal-halide perovskite nanocrystals (MHP NCs) is discussed, and the challenges associated with their thickness-controlled synthesis, environmental and thermal stability, and their application in making efficient LEDs are discussed.
Journal ArticleDOI

Controlling the nucleation and growth kinetics of lead halide perovskite quantum dots

TL;DR: In this paper , a room-temperature synthesis of monodisperse, isolable, spheroidal APbBr3 QDs with size tunable from 3 to > 13 nanometers was reported.
Journal ArticleDOI

Dual-Band-Tunable White-Light Emission from Bi3+/Te4+ Emitters in Perovskite-Derivative Cs2SnCl6 Microcrystals.

TL;DR: These findings provide not only new insights into the excited-state dynamics of Bi3+ and Te4+ in Cs2SnCl6, but also a general approach to achieve single-composition white-light emitters based on lead-free metal halides through ns2-metal ion co-doping.
Journal ArticleDOI

What Happens When Halide Perovskites Meet with Water?

TL;DR: In this paper , the degradation of halide perovskites upon water exposure has been intensively studied, resulting in chemical insights into key processes, including hydration, phase transformation, decomposition, and dissolution.
References
More filters
Journal ArticleDOI

Cesium Titanium(IV) Bromide Thin Films Based Stable Lead-free Perovskite Solar Cells

TL;DR: In this paper, the authors demonstrate experimentally the promise of cesium titanium(IV) bromide (Cs 2 TiBr 6 ), a part of the Ti-based vacancy-ordered double-perovskite halides family, in perovsite solar cells (PSCs) and show that high quality Cs 2TiBr 6 thin films can be prepared through a facile low-temperature vapor-based method.
Journal ArticleDOI

Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4

TL;DR: In this paper, the authors measured reflection, luminescence and absorption spectra in an exciton region of (C 10 H 21 NH 3 ) 2 PbI 4, which is determined to be of layered perovskite type by X-ray diffraction.
Journal ArticleDOI

Ligand-engineered bandgap stability in mixed-halide perovskite LEDs.

TL;DR: This work exemplifies how the functionality of metal halide perovskites is extremely sensitive to the nature of the (nano)crystalline surface and presents a route through which to control the formation and migration of surface defects to achieve bandgap stability for light emission and could also have a broader impact on other optoelectronic applications-such as photovoltaics-for which band gap stability is required.
Journal ArticleDOI

Colloidal Organohalide Perovskite Nanoplatelets Exhibiting Quantum Confinement.

TL;DR: Colloidal nanoplatelets with predominantly single unit cell thickness and submicron lateral dimensions are obtained, which are stable in solution and exhibit a sharp excitonic absorption feature 0.5 eV blue-shifted from that of the three-dimensional bulk MAPbBr3 phase, representing a new addition to the growing family of colloidal two-dimensional nanostructures.
Related Papers (5)