scispace - formally typeset
Open AccessJournal ArticleDOI

Steric Impediment of Ion Migration Contributes to Improved Operational Stability of Perovskite Solar Cells.

TLDR
It is observed that the size mismatch of the mixed "A" site composition films and devices leads to a steric effect to impede the migration pathways of ions to increase the activation energy of ion migration, which is demonstrated through multiple theoretical and experimental evidence.
Abstract
The operational instability of perovskite solar cells (PSCs) is known to mainly originate from the migration of ionic species (or charged defects) under a potential gradient. Compositional engineering of the "A" site cation of the ABX3 perovskite structure has been shown to be an effective route to improve the stability of PSCs. Here, the effect of size-mismatch-induced lattice distortions on the ion migration energetics and operational stability of PSCs is investigated. It is observed that the size mismatch of the mixed "A" site composition films and devices leads to a steric effect to impede the migration pathways of ions to increase the activation energy of ion migration, which is demonstrated through multiple theoretical and experimental evidence. Consequently, the mixed composition devices exhibit significantly improved thermal stability under continuous heating at 85 °C and operational stability under continuous 1 sun illumination, with an extrapolated lifetime of 2011 h, compared to the 222 h of the reference device.

read more

Citations
More filters
Journal ArticleDOI

High-Efficiency Perovskite Solar Cells.

TL;DR: This review summarizes the fundamentals behind the optoelectronic properties of perovskite materials, as well as the important approaches to fabricating high-efficiency perovSKite solar cells, and possible next-generation strategies for enhancing the PCE over the Shockley-Queisser limit are discussed.
Journal ArticleDOI

Stability-limiting heterointerfaces of perovskite photovoltaics

TL;DR: In this article , surface treatments may induce a negative work function shift (that is, more n-type), which activates halide migration to aggravate PSC instability, limiting the maximum stability improvement attainable for PSCs treated in this way.
Journal ArticleDOI

Shallow Iodine Defects Accelerate the Degradation of α-Phase Formamidinium Perovskite

TL;DR: In this article, the authors show that shallow iodine interstitial defects (I i ) can be generated unintentionally during commonly used post-fabrication treatments, which can lower the cubic-to-hexagonal transformation barrier of FAPbI3-based perovskites to accelerate its phase degradation.
Journal ArticleDOI

Molecular Interaction Regulates the Performance and Longevity of Defect Passivation for Metal Halide Perovskite Solar Cells

TL;DR: It is unraveled that the passivation agents with a stronger interaction energy are advantageous not only for effective defect passivation but also to suppress defect migration.
References
More filters
Journal ArticleDOI

Semiempirical GGA-type density functional constructed with a long-range dispersion correction.

TL;DR: A new density functional of the generalized gradient approximation (GGA) type for general chemistry applications termed B97‐D is proposed, based on Becke's power‐series ansatz from 1997, and is explicitly parameterized by including damped atom‐pairwise dispersion corrections of the form C6 · R−6.
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Journal ArticleDOI

Sequential deposition as a route to high-performance perovskite-sensitized solar cells

TL;DR: A sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film that greatly increases the reproducibility of their performance and allows the fabrication of solid-state mesoscopic solar cells with unprecedented power conversion efficiencies and high stability.
Journal ArticleDOI

Structural absorption by barbule microstructures of super black bird of paradise feathers

TL;DR: Physical structure is known to contribute to the appearance of bird plumage through structural color and specular reflection, but a third mechanism, structural absorption, leads to low reflectance and super black color in birds of paradise feathers.
Related Papers (5)