scispace - formally typeset
Journal ArticleDOI

Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load

TLDR
The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Abstract
The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a “nanostressing stage” located within a scanning electron microscope. The tensile-loading experiment was prepared and observed entirely within the microscope and was recorded on video. The MWCNTs broke in the outermost layer (“sword-in-sheath” failure), and the tensile strength of this layer ranged from 11 to 63 gigapascals for the set of 19 MWCNTs that were loaded. Analysis of the stress-strain curves for individual MWCNTs indicated that the Young's modulus E of the outermost layer varied from 270 to 950 gigapascals. Transmission electron microscopic examination of the broken nanotube fragments revealed a variety of structures, such as a nanotube ribbon, a wave pattern, and partial radial collapse.

read more

Citations
More filters
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Journal ArticleDOI

Graphene-based composite materials

TL;DR: The bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.
Journal ArticleDOI

A review on polymer nanofibers by electrospinning and their applications in nanocomposites

TL;DR: In this article, a comprehensive review is presented on the researches and developments related to electrospun polymer nanofibers including processing, structure and property characterization, applications, and modeling and simulations.
Journal ArticleDOI

Cellulose nanomaterials review: structure, properties and nanocomposites

TL;DR: This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them, and summarizes cellulOSE nanoparticles in terms of particle morphology, crystal structure, and properties.
Journal ArticleDOI

Advances in the science and technology of carbon nanotubes and their composites: a review

TL;DR: A review of recent advances in carbon nanotubes and their composites can be found in this article, where the authors examine the research work reported in the literature on the structure and processing of carbon Nanotubes.
References
More filters
Journal ArticleDOI

Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes

TL;DR: In this paper, the Young's modulus, strength, and toughness of nanostructures are evaluated using an atomic force microscopy (AFM) approach. And the results showed that the strength of the SiC NRs were substantially greater than those found previously for larger SiC structures, and they approach theoretical values.
Book

Dynamic Behavior of Materials

TL;DR: In this paper, the authors present a method to produce dynamic deformation at high strain rates by using Shear Bands (Thermoplastic Shear Instabilities) and dynamic fracture.
Journal ArticleDOI

Nanomechanics of carbon tubes: Instabilities beyond linear response.

TL;DR: With properly chosen parameters, the model provides a remarkably accurate ``roadmap'' of nanotube behavior beyond Hooke's law.
Journal ArticleDOI

Electrostatic deflections and electromechanical resonances of carbon nanotubes

TL;DR: The methods developed here have been applied to a nanobalance for nanoscopic particles and also to a Kelvin probe based on nanotubes, which indicates a crossover from a uniform elastic mode to an elastic mode that involves wavelike distortions in the nanotube.
Journal ArticleDOI

Young’s modulus of single-walled nanotubes

TL;DR: In this paper, the stiffness of single-walled carbon nanotubes is estimated by observing their freestanding room-temperature vibrations in a transmission electron microscope, assuming that the vibration modes are driven stochastically and are those of a clamped cantilever.
Related Papers (5)