scispace - formally typeset
Journal ArticleDOI

Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution

Reads0
Chats0
TLDR
In this paper, the evolution of perovskites formed from targeted precursor chemistries was investigated by correlating in situ temperature-dependent X-ray diffraction, thermogravimetric analysis, and mass spectral analysis of the evolved species.
Abstract
Following the prominent success of CH3NH3PbI3 in photovoltaics and other optoelectronic applications, focus has been placed on better understanding perovskite crystallization from precursor and intermediate phases in order to facilitate improved crystallinity often desirable for advancing optoelectronic properties. Understanding of stability and degradation is also of critical importance as these materials seek commercial applications. In this study, we investigate the evolution of perovskites formed from targeted precursor chemistries by correlating in situ temperature-dependent X-ray diffraction, thermogravimetric analysis, and mass spectral analysis of the evolved species. This suite of analyses reveals important precursor composition-induced variations in the processes underpinning perovskite formation and degradation. The addition of Cl− leads to widely different precursor evolution and perovskite formation kinetics, and results in significant changes to the degradation mechanism, including suppression of crystalline PbI2 formation and modification of the thermal stability of the perovskite phase. This work highlights the role of perovskite precursor chemistry in both its formation and degradation.

read more

Citations
More filters
Journal ArticleDOI

Critical Intermediate Structure That Directs the Crystalline Texture and Surface Morphology of Organo-Lead Trihalide Perovskite

TL;DR: Regulated by annealing temperature and the activation energies of the intermediate and perovskite, deduced from analysis of temperature-dependent structural kinetics, the intermediate phase is found to selectively mature first and then melt along the layering direction for epitaxial conversion into perovkite crystals.
Journal ArticleDOI

Vacuum-Assisted Thermal Annealing of CsPbI3 for Highly Stable and Efficient Inorganic Perovskite Solar Cells.

TL;DR: In this article , a vacuum-assisted thermal annealing (VATA) is demonstrated as an effective approach for controlling the morphology and crystallinity of the CsPbI 3 ǫ perovskite films formed from the precursors of PbI 2 , CsI, and dimethylammonium iodide (DMAI).
Journal ArticleDOI

The Effect of Methylammonium Iodide on the Supersaturation and Interfacial Energy of the Crystallization of Methylammonium Lead Triiodide Single Crystals

TL;DR: A V-shaped dependence of the crystallization onset temperature on theMAI:PbI2 ratio is observed, attributed to the MAI effects on the supersaturation of precursors and the interfacial energy of the crystal growth.
Journal ArticleDOI

X-ray diffraction of photovoltaic perovskites: Principles and applications

TL;DR: X-ray diffraction (XRD)-based techniques, including conventional laboratory-based XRD and synchrotron-based grazing-incidence wide-angle x-ray scattering, are widely used to probe the microstructure of photovoltaic perovskite thin films as mentioned in this paper .
References
More filters
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Journal ArticleDOI

Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.

TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Journal Article

Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber

TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Related Papers (5)
Trending Questions (1)
What companies mine perovskite?

This work highlights the role of perovskite precursor chemistry in both its formation and degradation.