scispace - formally typeset
Journal ArticleDOI

Structure of catabolite gene activator protein at 2.9 Å resolution suggests binding to left-handed B-DNA

David B. McKay, +1 more
- 30 Apr 1981 - 
- Vol. 290, Iss: 5809, pp 744-749
TLDR
The 2.9 Å resolution crystal structure of Escherichia coli catabolite gene activator protein (CAP) completed with cyclic AMP reveals two distinct structural domains separated by a cleft, suggesting that the CAP conversion of right- to left-handed DNA in a closed supercoil, is what activates transcription by RNA polymerase.
Abstract
The 2.9 A resolution crystal structure of Escherichia coli catabolite gene activator protein (CAP) complexed with cyclic AMP reveals two distinct structural domains separated by a cleft. The smaller carboxy-terminal domain is presumed to bind DNA while the amino-terminal domain is seen to bind cyclic AMP. Model building studies suggest that CAP binds to left-handed B-type DNA, contracting its major groove via two alpha-helices. It is possible that the CAP conversion of right- to left-handed DNA in a closed supercoil, is what activates transcription by RNA polymerase.

read more

Citations
More filters
Journal ArticleDOI

Structural basis for cAMP-mediated allosteric control of the catabolite activator protein

TL;DR: The results define the structural mechanisms that underlie allosteric control of this prototypic transcriptional regulatory factor and provide an illustrative example of how effector-mediated structural changes can control the activity of regulatory proteins.
Journal ArticleDOI

Genetic studies of the lac repressor. XIII. Extensive amino acid replacements generated by the use of natural and synthetic nonsense suppressors.

TL;DR: Analysis of the amino acid sequence of the Lac repressor reveals the location of sites in the protein involved in inducer binding, tighter binding to operator and thermal stability, and permits a virtual genetic image reconstruction of the lac repressor protein.
Journal ArticleDOI

Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors

TL;DR: Members of the IclR family of regulators control genes whose products are involved in the glyoxylate shunt in Enterobacteriaceae, multidrug resistance, degradation of aromatics, inactivation of quorum-sensing signals, determinants of plant pathogenicity and sporulation.
Journal ArticleDOI

Regulation by transcription factors in bacteria: beyond description

TL;DR: This review transmits the main ideas or concepts behind regulation by transcription factors and gives just enough examples to sustain these main ideas, thus avoiding a classical ennumeration of facts.
References
More filters
Journal ArticleDOI

Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution.

TL;DR: The haemagglutinin glycoprotein of influenza virus is a trimer comprising two structurally distinct regions: a triple-stranded coiled-coil of α-helices extends 76 Å from the membrane and a globular region of antiparallel β-sheet is positioned on top of this stem.
Journal ArticleDOI

Molecular structure of a left-handed double helical DNA fragment at atomic resolution

TL;DR: The DNA fragment d(CpGpCpC pGp CpG pG) crystallises as a left-handed double helical molecule with Watson–Crick base pairs and an antiparallel organisation of the sugar phosphate chains.
Journal ArticleDOI

Optimised parameters for A-DNA and B-DNA

TL;DR: The molecular structures presented have the most probable values of bond-lengths, bond-angles and furanose ring conformations as defined by accurate X-ray crystallographic analyses of relevant monomers.
Journal ArticleDOI

Three-Dimensional Structure of Immunoglobulins

TL;DR: This chapter discusses a study analyzing the three-dimensional structure of immunoglobulins, in which the periodicity of the crystal was used to reduce the background noise and reveal the molecular outline.
Journal ArticleDOI

Tomato bushy stunt virus at 2.9 A resolution.

TL;DR: The polypeptide chain of a TBSV subunit folds into two domains, connected by a hinge, and a flexibly-linked N-terminal arm, and RNA is also not uniquely fixed to sites on the major domains.
Related Papers (5)