scispace - formally typeset
Open AccessJournal ArticleDOI

Superconductivity in the Z 2 kagome metal KV 3 Sb 5

Reads0
Chats0
TLDR
In this paper, the authors reported the observation of bulk superconductivity in single crystals of the two-dimensional kagome metal (KV, Rb, Cs) with magnetic susceptibility, resistivity, and heat capacity measurements.
Abstract
Here we report the observation of bulk superconductivity in single crystals of the two-dimensional kagome metal ${\mathrm{KV}}_{3}{\mathrm{Sb}}_{5}$. Magnetic susceptibility, resistivity, and heat capacity measurements reveal superconductivity below ${T}_{c}=0.93\phantom{\rule{0.28em}{0ex}}\mathrm{K}$, and density functional theory (DFT) calculations further characterize the normal state as a ${\mathbb{Z}}_{2}$ topological metal. Our results demonstrate that the recent observation of superconductivity within the related kagome metal ${\mathrm{CsV}}_{3}{\mathrm{Sb}}_{5}$ is likely a common feature across the $A{\mathrm{V}}_{3}{\mathrm{Sb}}_{5}$ ($A$: K, Rb, Cs) family of compounds and establishes them as a rich arena for studying the interplay between bulk superconductivity, topological surface states, and likely electronic density wave order in an exfoliable kagome lattice.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Doping evolution of superconductivity, charge order and band topology in hole-doped topological kagome superconductors Cs(V$_{1-x}$Ti$_x$)$_3$Sb$_5$

TL;DR: In this article, the authors investigated the doping evolution of superconductivity, charge-density-wave (CDW) order, and band topology in doped topological kagome superconductors.
Posted Content

Hexagonal-to-base-centered-orthorhombic $4Q$ charge density wave order in kagome metals KV$_3$Sb$_5$, RbV$_3$Sb$_5$, and CsV$_3$Sb$_5$

TL;DR: In this paper, the ground state structures of the kagome metals KV$_3$Sb$_5, RbV$(Sb)$(1,0,0) and CsV$((Sb,Sb), Sb$ (1, 0, 0) ) using first principles calculations were obtained.
Journal ArticleDOI

Effect of tunable spin-orbit coupling on the superconducting properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>La</mml:mi><mml:msub><mml:mi>Ru</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>Si</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>

TL;DR: In this paper , a detailed investigation of the superconducting properties of the kagome-honeycomb lattice compound was performed by systematically tuning the spin-orbit coupling via doping of heavier elements Rh and Ir at the Ru site.
Journal ArticleDOI

Topological and nodal superconductor kagome magnesium triboride

TL;DR: In this article , the van Hove singularity, flat-band, multiple Dirac points, and nontrivial topology of the magnesium triboride superconductor were revealed.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Journal ArticleDOI

Projector augmented-wave method

TL;DR: An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way and can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function.
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Journal ArticleDOI

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set

TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.
Related Papers (5)