scispace - formally typeset
Journal ArticleDOI

TEMPO-oxidized cellulose nanofibers

Akira Isogai, +2 more
- 12 Jan 2011 - 
- Vol. 3, Iss: 1, pp 71-85
Reads0
Chats0
TLDR
The new cellulose-based nanofibers formed by size reduction process of native cellulose fibers by TEMPO-mediated oxidation have potential application as environmentally friendly and new bio- based nanomaterials in high-tech fields.
Abstract
Native wood celluloses can be converted to individual nanofibers 3–4 nm wide that are at least several microns in length, i.e. with aspect ratios >100, by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and successive mild disintegration in water. Preparation methods and fundamental characteristics of TEMPO-oxidized cellulose nanofibers (TOCN) are reviewed in this paper. Significant amounts of C6 carboxylate groups are selectively formed on each cellulose microfibril surface by TEMPO-mediated oxidation without any changes to the original crystallinity (∼74%) or crystal width of wood celluloses. Electrostatic repulsion and/or osmotic effects working between anionically-charged cellulose microfibrils, the ζ-potentials of which are approximately −75 mV in water, cause the formation of completely individualized TOCN dispersed in water by gentle mechanical disintegration treatment of TEMPO-oxidized wood cellulose fibers. Self-standing TOCN films are transparent and flexible, with high tensile strengths of 200–300 MPa and elastic moduli of 6–7 GPa. Moreover, TOCN-coated poly(lactic acid) films have extremely low oxygen permeability. The new cellulose-based nanofibers formed by size reduction process of native cellulose fibers by TEMPO-mediated oxidation have potential application as environmentally friendly and new bio-based nanomaterials in high-tech fields.

read more

Citations
More filters
Journal ArticleDOI

Isolation and Characterization of Nanocellulose with a Novel Shape from Walnut (Juglans Regia L.) Shell Agricultural Waste

TL;DR: Two nanocellulose materials were derived from WS by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidation and sulfuric acid hydrolysis, demonstrating the broad applicability and value of walnuts.
Journal ArticleDOI

Preparation and evaluation of high-lignin content cellulose nanofibrils from eucalyptus pulp

TL;DR: In this paper, high-lignin content cellulose nanofibrils (LCNFs) were successfully isolated from eucalyptus pulp through catalyzed chemical oxidation, followed by high-pressure homogenization.
Journal ArticleDOI

TEMPO-oxidized cellulose nanofibrils prepared from various plant holocelluloses

TL;DR: In this paper, TEMPO-oxidized holocellulose nanofibrils (TOHNs) obtained by mechanical disintegration treatment of TOHs in water were measured by atomic force microscopy in water, which were consistent with those of X-ray diffraction patterns.
Journal ArticleDOI

Tunable green oxygen barrier through layer-by-layer self-assembly of chitosan and cellulose nanocrystals.

TL;DR: It is reliably concluded that such CS/CNs nanocomposite holds promises for gas barrier applications in food and drug packaging as a clear coating on plastic films and tridimensional objects, improving performance and sustainability of the final packages.
Journal ArticleDOI

Physical and mechanical properties of PLA composites reinforced by TiO2 grafted flax fibers

TL;DR: In this article, a modified TiO2 grafted flax fibers were used to reinforce PLA composites, and the results showed statistically significant increase in adhesion bonding of the modified fibers to the matrix.
References
More filters
Journal ArticleDOI

Cellulose nanocrystals: chemistry, self-assembly, and applications.

TL;DR: Dr. Youssef Habibi’s research interests include the sustainable production of materials from biomass, development of high performance nanocomposites from lignocellulosic materials, biomass conversion technologies, and the application of novel analytical tools in biomass research.
Journal ArticleDOI

Polymer nanotechnology: Nanocomposites

TL;DR: In this paper, the technology involved with exfoliated clay-based nanocomposites and also include other important areas including barrier properties, flammability resistance, biomedical applications, electrical/electronic/optoelectronic applications and fuel cell interests.
Journal ArticleDOI

An Overview of Polylactides as Packaging Materials

TL;DR: The aim of this paper is to review the production techniques for PLAs, summarize the main properties of PLA and to delineate the main advantages and disadvantages of PLA as a polymeric packaging material.
Journal ArticleDOI

Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose

TL;DR: Never-Dried and once-dried hardwood celluloses were oxidized by a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated system, and highly crystalline and individualized cellulose nanofibers, dispersed in water, were prepared by mechanical treatment of the oxidized celluloses/water slurries.
Related Papers (5)