scispace - formally typeset
Journal ArticleDOI

The Chemistry and Applications of Metal-Organic Frameworks

Reads0
Chats0
TLDR
Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Abstract
Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.

read more

Citations
More filters
Journal ArticleDOI

Langmuir's Theory of Adsorption: A Centennial Review.

TL;DR: The Langmuir adsorption model captures the key physics of molecular interactions at interfaces and laid the foundation for further progress in understanding interfacial phenomena, developing new adsorbent materials, and designing engineering processes.
Journal ArticleDOI

Immobilization of N-Heterocyclic Carbene Compounds: A Synthetic Perspective.

TL;DR: This review intends to present a synthetic toolkit for the immobilization of N-heterocyclic carbene compounds, giving the reader an overview on synthetic techniques and strategies available in the literature.
Journal ArticleDOI

Heterogeneous Catalysis by Polyoxometalates in Metal–Organic Frameworks

TL;DR: The embedding of molecular metal oxides, or polyoxometalates (POMs), in metal-organic frameworks (MOFs) opens new research avenues in catalysis and beyond as discussed by the authors.
Journal ArticleDOI

Metal-Organic Framework-Based Separators for Enhancing Li-S Battery Stability: Mechanism of Mitigating Polysulfide Diffusion

TL;DR: In this article, a comparative study of metal-organic frameworks (MOFs) was performed for Li-S batteries, and the experimental results and analysis proved that a layer of MOFs on a separator did enhance the capacity stability.
Journal ArticleDOI

Zr(IV)-Based Metal-Organic Framework with T-Shaped Ligand: Unique Structure, High Stability, Selective Detection, and Rapid Adsorption of Cr2O72- in Water.

TL;DR: Taking advantage of its excellent stability, sensitive and selective sensing, as well as rapid and high adsorption, BUT-39 is expected to be useful in Cr2O72- detection in and removal from water.
References
More filters
Journal ArticleDOI

Reticular synthesis and the design of new materials

TL;DR: This work has shown that highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
Journal ArticleDOI

Metal–organic framework materials as catalysts

TL;DR: A critical review of the emerging field of MOF-based catalysis is presented and examples of catalysis by homogeneous catalysts incorporated as framework struts or cavity modifiers are presented.
Journal ArticleDOI

Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage

TL;DR: Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups and can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl.
Journal ArticleDOI

Design and synthesis of an exceptionally stable and highly porous metal-organic framework

TL;DR: In this article, an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxyates.
Related Papers (5)