scispace - formally typeset
Open AccessJournal ArticleDOI

The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements

TLDR
Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, a notable transition is found in Bennu’s surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface.
Abstract
The top-shaped morphology characteristic of asteroid (101955) Bennu, often found among fast-spinning asteroids and binary asteroid primaries, may have contributed substantially to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, we find a notable transition in Bennu’s surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennu’s surface has been most recently migrating towards its equator (given Bennu’s increasing spin rate), we infer that Bennu’s surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior is a mixture of voids and boulders. The presence of such heterogeneity and Bennu’s top shape are consistent with spin-induced failure at some point in its past, although the manner of its failure cannot yet be determined. Future measurements by the OSIRIS-REx spacecraft will provide insight into and may resolve questions regarding the formation and evolution of Bennu’s top-shape morphology and its link to the formation of binary asteroids.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Properties of Rubble-Pile Asteroid (101955) Bennu from OSIRIS-REx Imaging and Thermal Analysis

Daniella DellaGiustina, +57 more
- 19 Mar 2019 - 
TL;DR: Using images and thermal data from NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft, this paper showed that asteroid (101955) Bennu's surface is globally rough, dense with boulders, and low in albedo.
Journal ArticleDOI

Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface

TL;DR: Early measurements of numerous large candidate impact craters on near-Earth asteroid (101955) Bennu by the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) mission indicate a surface that is between 100 million and 1 billion years old, predating Bennu's expected duration as a near Earth asteroid as mentioned in this paper.
References
More filters
Journal ArticleDOI

Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top–shaped rubble pile

Sei-ichiro Watanabe, +99 more
- 19 Mar 2019 - 
TL;DR: The Hayabusa2 spacecraft measured the mass, size, shape, density, and spin rate of asteroid Ryugu, showing that it is a porous rubble pile, and observations of Ryugu's shape, mass, and geomorphology suggest that Ryugu was reshaped by centrifugally induced deformation during a period of rapid rotation.
Journal ArticleDOI

Scaling forces to asteroid surfaces: The role of cohesion

TL;DR: In this article, the scaling of physical forces to the extremely low ambient gravitational acceleration regimes found on the surfaces of small asteroids is performed, and it is found that van der Waals cohesive forces between regolith grains on asteroid surfaces should be a dominant force and compete with particle weights and be greater, in general, than electrostatic and solar radiation pressure forces.
Related Papers (5)

Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top–shaped rubble pile

Sei-ichiro Watanabe, +99 more
- 19 Mar 2019 - 

The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes

Seiji Sugita, +132 more
- 19 Apr 2019 -