scispace - formally typeset
Open AccessJournal ArticleDOI

Towards Better Analysis of Deep Convolutional Neural Networks

TLDR
Zhang et al. as discussed by the authors formulated a deep CNN as a directed acyclic graph and developed a hybrid visualization to disclose the multiple facets of each neuron and the interactions between them.
Abstract
Deep convolutional neural networks (CNNs) have achieved breakthrough performance in many pattern recognition tasks such as image classification. However, the development of high-quality deep models typically relies on a substantial amount of trial-and-error, as there is still no clear understanding of when and why a deep model works. In this paper, we present a visual analytics approach for better understanding, diagnosing, and refining deep CNNs. We formulate a deep CNN as a directed acyclic graph. Based on this formulation, a hybrid visualization is developed to disclose the multiple facets of each neuron and the interactions between them. In particular, we introduce a hierarchical rectangle packing algorithm and a matrix reordering algorithm to show the derived features of a neuron cluster. We also propose a biclustering-based edge bundling method to reduce visual clutter caused by a large number of connections between neurons. We evaluated our method on a set of CNNs and the results are generally favorable.

read more

Citations
More filters
Posted Content

Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI.

TL;DR: Previous efforts to define explainability in Machine Learning are summarized, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought, and a taxonomy of recent contributions related to the explainability of different Machine Learning models are proposed.
Journal ArticleDOI

Opportunities and obstacles for deep learning in biology and medicine.

TL;DR: It is found that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art.
Journal ArticleDOI

Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges

TL;DR: In this article, the authors systematically summarize methodologies and discuss challenges for deep multi-modal object detection and semantic segmentation in autonomous driving and provide an overview of on-board sensors on test vehicles, open datasets, and background information for object detection.
Journal ArticleDOI

Deep learning classifiers for hyperspectral imaging: A review

TL;DR: A comprehensive review of the current-state-of-the-art in DL for HSI classification, analyzing the strengths and weaknesses of the most widely used classifiers in the literature is provided, providing an exhaustive comparison of the discussed techniques.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Journal ArticleDOI

Deep learning

TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Related Papers (5)