scispace - formally typeset
Open AccessJournal ArticleDOI

Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants

TLDR
A comparison of the structure, function, regulation, and impact on host cells of the type III secretion systems in the animal pathogens Yersinia spp.
Abstract
Various gram-negative animal and plant pathogens use a novel, sec-independent protein secretion system as a basic virulence mechanism. It is becoming increasingly clear that these so-called type III secretion systems inject (translocate) proteins into the cytosol of eukaryotic cells, where the translocated proteins facilitate bacterial pathogenesis by specifically interfering with host cell signal transduction and other cellular processes. Accordingly, some type III secretion systems are activated by bacterial contact with host cell surfaces. Individual type III secretion systems direct the secretion and translocation of a variety of unrelated proteins, which account for species-specific pathogenesis phenotypes. In contrast to the secreted virulence factors, most of the 15 to 20 membrane-associated proteins which constitute the type III secretion apparatus are conserved among different pathogens. Most of the inner membrane components of the type III secretion apparatus show additional homologies to flagellar biosynthetic proteins, while a conserved outer membrane factor is similar to secretins from type II and other secretion pathways. Structurally conserved chaperones which specifically bind to individual secreted proteins play an important role in type III protein secretion, apparently by preventing premature interactions of the secreted factors with other proteins. The genes encoding type III secretion systems are clustered, and various pieces of evidence suggest that these systems have been acquired by horizontal genetic transfer during evolution. Expression of type III secretion systems is coordinately regulated in response to host environmental stimuli by networks of transcription factors. This review comprises a comparison of the structure, function, regulation, and impact on host cells of the type III secretion systems in the animal pathogens Yersinia spp., Pseudomonas aeruginosa, Shigella flexneri, Salmonella typhimurium, enteropathogenic Escherichia coli, and Chlamydia spp. and the plant pathogens Pseudomonas syringae, Erwinia spp., Ralstonia solanacearum, Xanthomonas campestris, and Rhizobium spp.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Pathogenic Escherichia coli

TL;DR: Few microorganisms are as versatile as Escherichia coli; it can also be a highly versatile, and frequently deadly, pathogen.
Journal ArticleDOI

Plant pathogens and integrated defence responses to infection.

TL;DR: The current knowledge of recognition-dependent disease resistance in plants is reviewed, and a few crucial concepts are included to compare and contrast plant innate immunity with that more commonly associated with animals.
Journal ArticleDOI

Molecular Basis of Bacterial Outer Membrane Permeability Revisited

TL;DR: This review summarizes the development in the field since the previous review and begins to understand how this bilayer of the outer membrane can retard the entry of lipophilic compounds, owing to increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopoly Saccharide structure is modified by environmental conditions.
Journal ArticleDOI

Genome Sequence of an Obligate Intracellular Pathogen of Humans: Chlamydia trachomatis

TL;DR: The phylogenetic mosaic of chlamydial genes, including a large number of genes with phylogenetic origins from eukaryotes, implies a complex evolution for adaptation to obligate intracellular parasitism.
Journal ArticleDOI

Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion

TL;DR: The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework to demonstrate that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving.
References
More filters
Journal ArticleDOI

Basic Local Alignment Search Tool

TL;DR: A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score.
Book

Principles and Practice of Infectious Diseases

TL;DR: This updated and expanded edition now offers 297 chapters that cover the basic principles of diagnosis and management, major clinical syndromes, all important pathogenic microbes and the diseases they cause, plus a number of specialised topics useful to the practitioner.
Book

Escherichia coli and Salmonella :cellular and molecular biology

TL;DR: The Enteric Bacterial Cell and the Age of Bacteria Variations on a Theme by Escherichia is described.
Journal ArticleDOI

Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold.

TL;DR: Related sequences in both alpha and beta and in other enzymes that bind ATP or ADP in catalysis help to identify regions contributing to an adenine nucleotide binding fold in both ATP synthase subunits.
Related Papers (5)