scispace - formally typeset
Open AccessJournal ArticleDOI

Ultrasensitive plasmonic sensing in air using optical fibre spectral combs.

Reads0
Chats0
TLDR
The underpinning of this work is a grating architecture—a gold-coated highly tilted Bragg grating—that excites a spectral comb of narrowband-cladding modes with effective indices near 1.0 and below that opens research directions for highly sensitive plasmonic sensing in gas.
Abstract
Surface plasmon polaritons (SPP) can be excited on metal-coated optical fibres, enabling the accurate monitoring of refractive index changes. Configurations reported so far mainly operate in liquids but not in air because of a mismatch between permittivities of guided light modes and the surrounding medium. Here we demonstrate a plasmonic optical fibre platform that overcomes this limitation. The underpinning of our work is a grating architecture—a gold-coated highly tilted Bragg grating—that excites a spectral comb of narrowband-cladding modes with effective indices near 1.0 and below. Using conventional spectral interrogation, we measure shifts of the SPP-matched resonances in response to static atmospheric pressure changes. A dynamic experiment conducted using a laser lined-up with an SPP-matched resonance demonstrates the ability to detect an acoustic wave with a resolution of 10−8 refractive index unit (RIU). We believe that this configuration opens research directions for highly sensitive plasmonic sensing in gas. Fibre sensors are key to many minimally-invasive detection techniques but, owing to an index mismatch, they are often limited to aqueous environments. Here, Caucheteur et al. develop a high-resolution fibre gas sensor with a tilted in-fibre grating that allows coupling to higher-order plasmon modes.

read more

Citations
More filters
Journal ArticleDOI

The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays.

TL;DR: A comprehensive review on the development and state of the art of colorimetric and fluorometric sensor arrays is presented and the various chemometric and statistical analyses of high-dimensional data are presented and critiqued in reference to their use in chemical sensing.
Journal ArticleDOI

Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth

TL;DR: In this paper, the authors focus on optical refractive index (RI) sensors with no fluorescent labeling required, and utilize two parameters to characterize and compare the performance of optical RI sensors: sensitivity to RI change (denoted by symbol SRI) and figure of merit (in short, FoM).
Journal ArticleDOI

Femtomolar Detection by Nanocoated Fiber Label-Free Biosensors.

TL;DR: Repeated experiments confirm a big leap in performance thanks to the capability to detect femtomolar concentrations in human serum, improving the detection limit by 3 orders of magnitude when compared with other fiber-based configurations.
Journal ArticleDOI

Metal–Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform

TL;DR: This study presents a simple design strategy and high performance of nanoporous metal-organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework.
References
More filters
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Surface plasmon subwavelength optics

TL;DR: By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved.
Journal ArticleDOI

Surface plasmon resonance sensors: review

TL;DR: Main application areas are outlined and examples of applications of SPR sensor technology are presented and future prospects of SPR technology are discussed.
Journal ArticleDOI

Surface plasmon resonance for gas detection and biosensing

TL;DR: The surface plasmon resonance (SPR) is a new optical technique in the field of chemical sensing as discussed by the authors, which can be used for gas detection, together with results from exploratory experiments with relevance to biosensing.
Journal ArticleDOI

Refractive index of air: new equations for the visible and near infrared

Philip E. Ciddor
- 20 Mar 1996 - 
TL;DR: This work critically reviewed recent research at the National Physical Laboratory, the International Bureau of Weights and Measures, and elsewhere that has led to revised formulas and data for the dispersion and density of the major components of the atmosphere to yield a set of equations that match recently reported measurements to within the experimental error.
Related Papers (5)