scispace - formally typeset
Journal ArticleDOI

Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts

TLDR
It is shown that a pair of perovskite cells connected in series can power the electrochemical breakdown of water into hydrogen and oxygen efficiently, and the combination of the two yields a water-splitting photocurrent density and a solar-to-hydrogen efficiency of 12.3%.
Abstract
Although sunlight-driven water splitting is a promising route to sustainable hydrogen fuel production, widespread implementation is hampered by the expense of the necessary photovoltaic and photoelectrochemical apparatus. Here, we describe a highly efficient and low-cost water-splitting cell combining a state-of-the-art solution-processed perovskite tandem solar cell and a bifunctional Earth-abundant catalyst. The catalyst electrode, a NiFe layered double hydroxide, exhibits high activity toward both the oxygen and hydrogen evolution reactions in alkaline electrolyte. The combination of the two yields a water-splitting photocurrent density of around 10 milliamperes per square centimeter, corresponding to a solar-to-hydrogen efficiency of 12.3%. Currently, the perovskite instability limits the cell lifetime.

read more

Citations
More filters
Journal ArticleDOI

Integrated Three-Dimensional Carbon Paper/Carbon Tubes/Cobalt-Sulfide Sheets as an Efficient Electrode for Overall Water Splitting.

TL;DR: Carbon paper/carbon tubes/cobalt-sulfide is introduced as an integrated three-dimensional array electrode for cost-effective and energy-efficient HER and OER in alkaline medium and displays superior performance compared to non-noble metal catalysts reported previously.
Journal ArticleDOI

Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting

TL;DR: A new synthetic method to grow Cu2O nanowire arrays on conductive fluorine-doped tin oxide substrates with well-controlled phase and excellent electronic and photonic properties is developed and an innovative blocking layer strategy is introduced to enable high performance.
Journal ArticleDOI

Mechanistic Insights on Ternary Ni2−xCoxP for Hydrogen Evolution and Their Hybrids with Graphene as Highly Efficient and Robust Catalysts for Overall Water Splitting

TL;DR: In this article, a series of highly active and robust Co-doped nickel phosphides (Ni2−xCoxP) catalysts and their hybrids with reduced graphene oxide (rGO) are developed as bifunctional catalysts for both hydrogen and oxygen evolution reactions (HER and OER).
Journal ArticleDOI

Versatile nanoporous bimetallic phosphides towards electrochemical water splitting

TL;DR: In this article, the authors report nanoporous bimetallic (Co1−xFex)2P phosphides with controllable compositions and tuneable porosity, which are fabricated by the combination of metallurgical alloy design and electrochemical etching.
Journal ArticleDOI

Solar Hydrogen Production Using Carbon Quantum Dots and a Molecular Nickel Catalyst

TL;DR: CQDs are shown to be a highly sustainable light-absorbing material for photocatalytic schemes, which are not limited by cost, toxicity, or lack of scalability.
References
More filters
Journal ArticleDOI

Electrochemical Photolysis of Water at a Semiconductor Electrode

TL;DR: Water photolysis is investigated by exploiting the fact that water is transparent to visible light and cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm.
Journal ArticleDOI

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films

TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Journal ArticleDOI

Sequential deposition as a route to high-performance perovskite-sensitized solar cells

TL;DR: A sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film that greatly increases the reproducibility of their performance and allows the fabrication of solid-state mesoscopic solar cells with unprecedented power conversion efficiencies and high stability.
Related Papers (5)