scispace - formally typeset
Journal ArticleDOI

Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts

TLDR
It is shown that a pair of perovskite cells connected in series can power the electrochemical breakdown of water into hydrogen and oxygen efficiently, and the combination of the two yields a water-splitting photocurrent density and a solar-to-hydrogen efficiency of 12.3%.
Abstract
Although sunlight-driven water splitting is a promising route to sustainable hydrogen fuel production, widespread implementation is hampered by the expense of the necessary photovoltaic and photoelectrochemical apparatus. Here, we describe a highly efficient and low-cost water-splitting cell combining a state-of-the-art solution-processed perovskite tandem solar cell and a bifunctional Earth-abundant catalyst. The catalyst electrode, a NiFe layered double hydroxide, exhibits high activity toward both the oxygen and hydrogen evolution reactions in alkaline electrolyte. The combination of the two yields a water-splitting photocurrent density of around 10 milliamperes per square centimeter, corresponding to a solar-to-hydrogen efficiency of 12.3%. Currently, the perovskite instability limits the cell lifetime.

read more

Citations
More filters
Journal ArticleDOI

All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications

TL;DR: Simple, fast and reproducible halide ion exchange reactions in CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) at room temperature are described and the photoluminescence of these NCs can be tuned over the entire visible region.
Journal ArticleDOI

Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni–Fe Oxide Water Splitting Electrocatalysts

TL;DR: It is concluded that a discussion of the superior catalytic OER activity of Ni-FeOOH electrocatalysts in terms of surface catalysis and redox-inactive metal sites likely represents an oversimplification that fails to capture essential aspects of the synergisms at highly active Ni- Fe sites.
Journal ArticleDOI

Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells.

TL;DR: The adduct approach proposed in this Account is a very promising methodology to achieve high quality perovskite films with high photovoltaic performance and single crystal growth on the conductive substrate is expected to be possible if the authors kinetically control the elimination of Lewis base in the adduct.
Journal ArticleDOI

Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation

TL;DR: Mechanistic studies indicate that the nickel–vanadium-layered double hydroxides can provide high intrinsic catalytic activity, mainly due to enhanced conductivity, facile electron transfer and abundant active sites, and may expand the scope of cost-effective electrocatalysts for water splitting.
Journal ArticleDOI

Efficient and Stable Bifunctional Electrocatalysts Ni/NixMy (M = P, S) for Overall Water Splitting

TL;DR: In this article, three-dimensional (3D) porous Ni/Ni8P3 and Ni/N9S8 electrodes are prepared by sequential treatment of commercial Ni-foam with acid activation, followed by phosphorization or sulfurization, which can act as self-supported bifunctional electrocatalytic electrodes for direct water splitting with excellent activity toward oxygen evolution reaction and hydrogen evolution reaction in alkaline media.
References
More filters
Journal ArticleDOI

Electrochemical Photolysis of Water at a Semiconductor Electrode

TL;DR: Water photolysis is investigated by exploiting the fact that water is transparent to visible light and cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm.
Journal ArticleDOI

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films

TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Journal ArticleDOI

Sequential deposition as a route to high-performance perovskite-sensitized solar cells

TL;DR: A sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film that greatly increases the reproducibility of their performance and allows the fabrication of solid-state mesoscopic solar cells with unprecedented power conversion efficiencies and high stability.
Related Papers (5)