scispace - formally typeset
Search or ask a question

Showing papers on "Aging brain published in 2019"


Journal ArticleDOI
TL;DR: The current knowledge pertaining to astrocytes’ role in brain pathologies is described and the possibilities to target them as approach toward pharmacological therapies for neuro-pathologies are discussed.
Abstract: Astrocytes are a population of cells with distinctive morphological and functional characteristics that differ within specific areas of the brain. Postnatally, astrocyte progenitors migrate to reach their brain area and related properties. They have a regulatory role of brain functions that are implicated in neurogenesis and synaptogenesis, controlling blood-brain barrier permeability and maintaining extracellular homeostasis. Mature astrocytes also express some genes enriched in cell progenitors, suggesting they can retain proliferative potential. Considering heterogeneity of cell population, it is not surprising that their disorders are related to a wide range of different neuro-pathologies. Brain diseases are characterized by the active inflammatory state of the astrocytes, which is usually described as up-regulation of glial fibrillary acidic protein (GFAP). In particular, the loss of astrocytes function as a result of cellular senescence could have implications for the neurodegenerative disorders, such as Alzheimer disease and Huntington disease, and for the aging brain. Astrocytes can also drive the induction and the progression of the inflammatory state due to their Ca2+ signals and that it is strongly related to the disease severity/state. Moreover, they contribute to the altered neuronal activity in several frontal cortex pathologies such as ischemic stroke and epilepsy. There, we describe the current knowledge pertaining to astrocytes' role in brain pathologies and discuss the possibilities to target them as approach toward pharmacological therapies for neuro-pathologies.

172 citations


Journal ArticleDOI
TL;DR: A deeper understanding of the underlying pathways responsible for APOE4 toxicity is needed so that more tractable pathways and drug targets can be identified to reduceAPOE4-mediated disease risk.
Abstract: APOE4 is the greatest genetic risk factor for late-onset Alzheimer's disease (AD), increasing the risk of developing the disease by 3-fold in the 14% of the population that are carriers. Despite 25 years of research, the exact mechanisms underlying how APOE4 contributes to AD pathogenesis remain incompletely defined. APOE in the brain is primarily expressed by astrocytes and microglia, cell types that are now widely appreciated to play key roles in the pathogenesis of AD; thus, a picture is emerging wherein APOE4 disrupts normal glial cell biology, intersecting with changes that occur during normal aging to ultimately cause neurodegeneration and cognitive dysfunction. This review article will summarize how APOE4 alters specific pathways in astrocytes and microglia in the context of AD and the aging brain. APOE itself, as a secreted lipoprotein without enzymatic activity, may prove challenging to directly target therapeutically in the classical sense. Therefore, a deeper understanding of the underlying pathways responsible for APOE4 toxicity is needed so that more tractable pathways and drug targets can be identified to reduce APOE4-mediated disease risk.

161 citations


Journal ArticleDOI
TL;DR: This review aims to examine the role of the ketogenic diet in Alzheimer’s disease progression and to outline specific aspects of the nutritional profile providing a rationale for the implementation of dietary interventions as a therapeutic strategy for Alzheimer's disease.
Abstract: At present, the prevalence of Alzheimer’s disease, a devastating neurodegenerative disorder, is increasing. Although the mechanism of the underlying pathology is not fully uncovered, in the last years, there has been significant progress in its understanding. This includes: Progressive deposition of amyloid β-peptides in amyloid plaques and hyperphosphorylated tau protein in intracellular as neurofibrillary tangles; neuronal loss; and impaired glucose metabolism. Due to a lack of effective prevention and treatment strategy, emerging evidence suggests that dietary and metabolic interventions could potentially target these issues. The ketogenic diet is a very high-fat, low-carbohydrate diet, which has a fasting-like effect bringing the body into a state of ketosis. The presence of ketone bodies has a neuroprotective impact on aging brain cells. Moreover, their production may enhance mitochondrial function, reduce the expression of inflammatory and apoptotic mediators. Thus, it has gained interest as a potential therapy for neurodegenerative disorders like Alzheimer’s disease. This review aims to examine the role of the ketogenic diet in Alzheimer’s disease progression and to outline specific aspects of the nutritional profile providing a rationale for the implementation of dietary interventions as a therapeutic strategy for Alzheimer’s disease.

159 citations


Journal ArticleDOI
TL;DR: Dysfunction in the neurovascular unit is identified as one of the earliest triggers of neurological aging and demonstrates that the aging brain may retain considerable latent capacity, which can be revitalized by therapeutic inhibition of TGFβ signaling.
Abstract: Aging involves a decline in neural function that contributes to cognitive impairment and disease. However, the mechanisms underlying the transition from a young-and-healthy to aged-and-dysfunctional brain are not well understood. Here, we report breakdown of the vascular blood-brain barrier (BBB) in aging humans and rodents, which begins as early as middle age and progresses to the end of the life span. Gain-of-function and loss-of-function manipulations show that this BBB dysfunction triggers hyperactivation of transforming growth factor-β (TGFβ) signaling in astrocytes, which is necessary and sufficient to cause neural dysfunction and age-related pathology in rodents. Specifically, infusion of the serum protein albumin into the young rodent brain (mimicking BBB leakiness) induced astrocytic TGFβ signaling and an aged brain phenotype including aberrant electrocorticographic activity, vulnerability to seizures, and cognitive impairment. Furthermore, conditional genetic knockdown of astrocytic TGFβ receptors or pharmacological inhibition of TGFβ signaling reversed these symptomatic outcomes in aged mice. Last, we found that this same signaling pathway is activated in aging human subjects with BBB dysfunction. Our study identifies dysfunction in the neurovascular unit as one of the earliest triggers of neurological aging and demonstrates that the aging brain may retain considerable latent capacity, which can be revitalized by therapeutic inhibition of TGFβ signaling.

139 citations


Journal ArticleDOI
TL;DR: The significance of targeting senescent astrocytes as a novel approach toward therapies for age‐associated neurodegenerative disease is discussed and the term “astrosenescence” is proposed to describe this phenotype.
Abstract: Astrocytes participate in numerous aspects of central nervous system (CNS) physiology ranging from ion balance to metabolism, and disruption of their physiological roles can therefore be a contributor to CNS dysfunction and pathology. Cellular senescence, one of the mechanisms of aging, has been proposed as a central component of the age dependency of neurodegenerative disorders. Cumulative evidence supports an integral role of astrocytes in the initiation and progression of neurodegenerative disease and cognitive decline with aging. The loss of astrocyte function or the gain of neuroinflammatory function as a result of cellular senescence could have profound implications for the aging brain and neurodegenerative disorders, and we propose the term "astrosenescence" to describe this phenotype. This review summarizes the current evidence pertaining to astrocyte senescence from early evidence, in vitro characterization and relationship to age-related neurodegenerative disease. We discuss the significance of targeting senescent astrocytes as a novel approach toward therapies for age-associated neurodegenerative disease.

137 citations


Journal ArticleDOI
TL;DR: A model of senescent microglia is generated based on the observation that all dystrophicmicroglia show iron overload, which causes them to take on a senescent phenotype and can cause changes in models of neurodegeneration similar to those observed in patients.
Abstract: The single largest risk factor for etiology of neurodegenerative diseases like Alzheimer's disease is increased age. Therefore, understanding the changes that occur as a result of aging is central to any possible prevention or cure for such conditions. Microglia, the resident brain glial population most associated with both protection of neurons in health and their destruction is disease, could be a significant player in age related changes. Microglia can adopt an aberrant phenotype sometimes referred to either as dystrophic or senescent. While aged microglia have been frequently identified in neurodegenerative diseases such as Alzheimer's disease, there is no conclusive evidence that proves a causal role. This has been hampered by a lack of models of aged microglia. We have recently generated a model of senescent microglia based on the observation that all dystrophic microglia show iron overload. Iron-overloading cultured microglia causes them to take on a senescent phenotype and can cause changes in models of neurodegeneration similar to those observed in patients. This review considers how this model could be used to determine the role of senescent microglia in neurodegenerative diseases.

132 citations


Journal ArticleDOI
TL;DR: Although further research is needed to determine the precise contribution of deficient Wnt signaling to AD pathogenesis, targeting Wnt signalling components may provide novel therapeutic avenues for synapse protection or restoration in the brain.
Abstract: Growing evidence suggests that synaptic signaling is compromised in the aging brain and in Alzheimer’s disease (AD), contributing to synaptic decline. Wnt signaling is a prominent pathway at the synapse and is required for synaptic plasticity and maintenance in the adult brain. In this review, we summarize the current knowledge on deregulation of Wnt signaling in the context of aging and AD. Emerging studies suggest that enhancing Wnt signaling could boost synaptic function during aging, and ameliorate synaptic pathology in AD. Although further research is needed to determine the precise contribution of deficient Wnt signaling to AD pathogenesis, targeting Wnt signaling components may provide novel therapeutic avenues for synapse protection or restoration in the brain.

130 citations


Journal ArticleDOI
TL;DR: The evidence for beneficial effects of multiple flavonoids in models of AD, PD, Huntington’s disease, HD, and ALS is presented and common mechanisms of action are identified.
Abstract: Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), currently affect more than 6 million people in the United States. Unfortunately, there are no treatments that slow or prevent disease development and progression. Regardless of the underlying cause of the disorder, age is the strongest risk factor for developing these maladies, suggesting that changes that occur in the aging brain put it at increased risk for neurodegenerative disease development. Moreover, since there are a number of different changes that occur in the aging brain, it is unlikely that targeting a single change is going to be effective for disease treatment. Thus, compounds that have multiple biological activities that can impact the various age-associated changes in the brain that contribute to neurodegenerative disease development and progression are needed. The plant-derived flavonoids have a wide range of activities that could make them particularly effective for blocking the age-associated toxicity pathways associated with neurodegenerative diseases. In this review, the evidence for beneficial effects of multiple flavonoids in models of AD, PD, HD, and ALS is presented and common mechanisms of action are identified. Overall, the preclinical data strongly support further investigation of specific flavonoids for the treatment of neurodegenerative diseases.

118 citations


Journal ArticleDOI
TL;DR: The results reinforce the notion that the aging brain undergoes a reorganization process, and serves as a solid basis for exploring functional connectivity as a preclinical marker of neurodegenerative disease.

104 citations


Journal ArticleDOI
TL;DR: Recent literature on age‐associated neurometabolite changes as measured by proton MRS, and the associations with cognition in non‐clinical populations are summarized.

76 citations


Journal ArticleDOI
19 Nov 2019-eLife
TL;DR: Two structurally distinct Alzheimer's disease drug candidates, CMS121 and J147, were used to identify a unique molecular pathway that is shared between the aging brain and AD and show that targeting specific metabolic aspects of the Aging brain could result in treatments for dementia.
Abstract: Because old age is the greatest risk factor for dementia, a successful therapy will require an understanding of the physiological changes that occur in the brain with aging. Here, two structurally distinct Alzheimer's disease (AD) drug candidates, CMS121 and J147, were used to identify a unique molecular pathway that is shared between the aging brain and AD. CMS121 and J147 reduced cognitive decline as well as metabolic and transcriptional markers of aging in the brain when administered to rapidly aging SAMP8 mice. Both compounds preserved mitochondrial homeostasis by regulating acetyl-coenzyme A (acetyl-CoA) metabolism. CMS121 and J147 increased the levels of acetyl-CoA in cell culture and mice via the inhibition of acetyl-CoA carboxylase 1 (ACC1), resulting in neuroprotection and increased acetylation of histone H3K9 in SAMP8 mice, a site linked to memory enhancement. These data show that targeting specific metabolic aspects of the aging brain could result in treatments for dementia.

Journal ArticleDOI
TL;DR: An association between increased hippocampal activity and tau accumulation in the inferior temporal cortex is found, suggesting that the pathogenesis of hippocampal hyperactivity occurs concurrent with the spread of tau pathology from the entorhinal cortex to the neocortex, before the clinical manifestations of Alzheimer's disease.
Abstract: Animal studies demonstrate that hyperactive neurons facilitate early accumulation and spread of tau and amyloid-β proteins in the pathological cascade of Alzheimer's disease (AD). Human neuroimaging studies have linked hippocampal hyperactivity to amyloid-β accumulation, apolipoprotein e4 (APOE4) and clinical progression from prodromal AD to clinical dementia. The relationship between hippocampal hyperactivity and early AD molecular pathology (amyloid-β and tau accumulation) before clinical symptoms remains to be elucidated. Here, we studied 120 clinically normal older humans (80 females/40 males) enrolled in the Harvard Aging Brain Study. We measured functional magnetic resonance imaging (fMRI) activity during successful memory encoding and amyloid-β accumulation with PiB-positron emission tomography imaging. Additionally, we measured tau accumulation using AV1451 PET imaging in a subset of 87 participants. In this subset, we found that inferior temporal tau accumulation was associated with increased fMRI activity in the hippocampus, but showed no clear association with amyloid. Together, the findings support a hypothetical model of the evolution of preclinical AD that place hippocampal hyperactivity concurrent with spread of tau pathology to neocortical regions before clinical impairment.SIGNIFICANCE STATEMENT The circumstances under which the hippocampus becomes hyperactive in preclinical stages of Alzheimer's disease (AD) have thus far remained elusive. Recent advances in positron emission tomography (PET) tracers now enable in vivo characterization of amyloid-β and tau accumulation. Here, we combine amyloid and tau PET with functional magnetic resonance imaging (fMRI) to examine the association between Alzheimer's disease pathology and memory-related brain activity in clinically normal older adults. We found an association between increased hippocampal activity and tau accumulation in the inferior temporal cortex. These data suggest that the pathogenesis of hippocampal hyperactivity occurs concurrent with the spread of tau pathology from the entorhinal cortex to the neocortex, before the clinical manifestations of Alzheimer's disease.

Journal ArticleDOI
02 Sep 2019-eLife
TL;DR: Functional connectivity of alEC and posteromedial EC, subregions of EC that differ in functional specialization and cortical connectivity, is contrasted to provide an explanation for the anatomic specificity of neocortical tau deposition in the aging brain and reveal relationships between normal aging and the evolution of AD.
Abstract: Tau pathology first appears in the transentorhinal and anterolateral entorhinal cortex (alEC) in the aging brain. The transition to Alzheimer's disease (AD) is hypothesized to involve amyloid-β (Aβ) facilitated tau spread through neural connections. We contrasted functional connectivity (FC) of alEC and posteromedial EC (pmEC), subregions of EC that differ in functional specialization and cortical connectivity, with the hypothesis that alEC-connected cortex would show greater tau deposition than pmEC-connected cortex. We used resting state fMRI to measure FC, and PET to measure tau and Aβ in cognitively normal older adults. Tau preferentially deposited in alEC-connected cortex compared to pmEC-connected or non-connected cortex, and stronger connectivity was associated with increased tau deposition. FC-tau relationships were present regardless of Aβ, although strengthened with Aβ. These results provide an explanation for the anatomic specificity of neocortical tau deposition in the aging brain and reveal relationships between normal aging and the evolution of AD.

Journal ArticleDOI
TL;DR: Therapeutic strategies targeting lysosomes and autophagic machinery have already been tested in several aging-related neurodegenerative diseases with promising results, suggesting that improving lysOSomal function could be similarly beneficial in preserving function in the aging brain.

Journal ArticleDOI
TL;DR: Age-induced effects of GPCR signaling via the Gi/o subfamily at the CNS is reviewed, which results in decreased brain functions, impaired neuroregeneration, and increased vulnerability to neuropathologies, such as Alzheimer's and Parkinson diseases.
Abstract: Cells translate extracellular signals to regulate processes such as differentiation, metabolism and proliferation, via transmembranar receptors. G protein-coupled receptors (GPCRs) belong to the largest family of transmembrane receptors, with over 800 members in the human species. Given the variety of key physiological functions regulated by GPCRs, these are main targets of existing drugs. During normal aging, alterations in the expression and activity of GPCRs have been observed. The central nervous system (CNS) is particularly affected by these alterations, which results in decreased brain functions, impaired neuroregeneration, and increased vulnerability to neuropathologies, such as Alzheimer's and Parkinson diseases. GPCRs signal via heterotrimeric G proteins, such as Go, the most abundant heterotrimeric G protein in CNS. We here review age-induced effects of GPCR signaling via the Gi/o subfamily at the CNS. During the aging process, a reduction in protein density is observed for almost half of the Gi/o-coupled GPCRs, particularly in age-vulnerable regions such as the frontal cortex, hippocampus, substantia nigra and striatum. Gi/o levels also tend to decrease with aging, particularly in regions such as the frontal cortex. Alterations in the expression and activity of GPCRs and coupled G proteins result from altered proteostasis, peroxidation of membranar lipids and age-associated neuronal degeneration and death, and have impact on aging hallmarks and age-related neuropathologies. Further, due to oligomerization of GPCRs at the membrane and their cooperative signaling, down-regulation of a specific Gi/o-coupled GPCR may affect signaling and drug targeting of other types/subtypes of GPCRs with which it dimerizes. Gi/o-coupled GPCRs receptorsomes are thus the focus of more effective therapeutic drugs aiming to prevent or revert the decline in brain functions and increased risk of neuropathologies at advanced ages.

Journal ArticleDOI
TL;DR: It is reported that countering age-related decreased O- GlcNAc transferase (OGT) expression and O-GlcNAcylation ameliorates cognitive impairments in aged mice and identifies O-glcNAcylaton as a key molecular mediator promoting cognitive rejuvenation.

Journal ArticleDOI
TL;DR: Evidence is focused on the evidence that LRRK2 and its mutants are associated with autophagy dysregulation and the role of aging in L RRK2-induced synucleinopathy, which is clinically and neuropathologically similar to idiopathic Parkinson's disease.
Abstract: Autophagy is a highly conserved process by which long-lived macromolecules, protein aggregates and dysfunctional/damaged organelles are delivered to lysosomes for degradation. Autophagy plays a crucial role in regulating protein quality control and cell homeostasis in response to energetic needs and environmental challenges. Indeed, activation of autophagy increases the life-span of living organisms, and impairment of autophagy is associated with several human disorders, among which neurodegenerative disorders of aging, such as Parkinson's disease. These disorders are characterized by the accumulation of aggregates of aberrant or misfolded proteins that are toxic for neurons. Since aging is associated with impaired autophagy, autophagy inducers have been viewed as a strategy to counteract the age-related physiological decline in brain functions and emergence of neurodegenerative disorders. Parkinson's disease is a hypokinetic, multisystemic disorder characterized by age-related, progressive degeneration of central and peripheral neuronal populations, associated with intraneuronal accumulation of proteinaceous aggregates mainly composed by the presynaptic protein α-synuclein. α-synuclein is a substrate of macroautophagy and chaperone-mediated autophagy (two major forms of autophagy), thus impairment of its clearance might favor the process of α-synuclein seeding and spreading that trigger and sustain the progression of this disorder. Genetic factors causing Parkinson's disease have been identified, among which mutations in the LRRK2 gene, which encodes for a multidomain protein encompassing central GTPase and kinase domains, surrounded by protein-protein interaction domains. Six LRRK2 mutations have been pathogenically linked to Parkinson's disease, the most frequent being the G2019S in the kinase domain. LRRK2-associated Parkinson's disease is clinically and neuropathologically similar to idiopathic Parkinson's disease, also showing age-dependency and incomplete penetrance. Several mechanisms have been proposed through which LRRK2 mutations can lead to Parkinson's disease. The present article will focus on the evidence that LRRK2 and its mutants are associated with autophagy dysregulation. Studies in cell lines and neurons in vitro and in LRRK2 knock-out, knock-in, kinase-dead and transgenic animals in vivo will be reviewed. The role of aging in LRRK2-induced synucleinopathy will be discussed. Possible mechanisms underlying the LRRK2-mediated control over autophagy will be analyzed, and the contribution of autophagy dysregulation to the neurotoxic actions of LRRK2 will be examined.

Journal ArticleDOI
TL;DR: Greater baseline perfusion, particularly in the left dorsolateral prefrontal cortex and right thalamus, was associated with better executive functions and greater whole‐brain perfusion loss wasassociated with worsening brain structure and declining processing speed.
Abstract: Cerebral perfusion declines across the lifespan and is altered in the early stages of several age-related neuropathologies. Little is known, however, about the longitudinal evolution of perfusion in healthy older adults, particularly when perfusion is quantified using magnetic resonance imaging with arterial spin labeling (ASL). The objective was to characterize longitudinal perfusion in typically aging adults and elucidate associations with cognition and brain structure. Adults who were functionally intact at baseline (n = 161, ages 47-89) underwent ASL imaging to quantify whole-brain gray matter perfusion; a subset (n = 136) had repeated imaging (average follow-up: 2.3 years). Neuropsychological testing at each visit was summarized into executive function, memory, and processing speed composites. Global gray matter volume, white matter microstructure (mean diffusivity), and white matter hyperintensities were also quantified. We assessed baseline associations among perfusion, cognition, and brain structure using linear regression, and longitudinal relationships using linear mixed effects models. Greater baseline perfusion, particularly in the left dorsolateral prefrontal cortex and right thalamus, was associated with better executive functions. Greater whole-brain perfusion loss was associated with worsening brain structure and declining processing speed. This study helps validate noninvasive MRI-based perfusion imaging and underscores the importance of cerebral blood flow in cognitive aging.

Journal ArticleDOI
TL;DR: How nutraceuticals present in a wide variety of plants, fruits and seeds, natural vitamins or their analogues, synthetic antioxidants and other compounds taken with the diet can ameliorate the cognitive decline of brain aging by correcting the biochemical alterations at multiple levels is described.

Journal ArticleDOI
TL;DR: The results strengthen existing evidence of structural and metabolic change in the aging brain and support the use of connectivity gradients as a compact framework to analyze and conceptualize brain‐based biomarkers of aging.
Abstract: Aging is characterized by accumulation of structural and metabolic changes in the brain. Recent studies suggest transmodal brain networks are especially sensitive to aging, which, we hypothesize, may be due to their apical position in the cortical hierarchy. Studying an open-access healthy cohort (n = 102, age range = 30-89 years) with MRI and Aβ PET data, we estimated age-related cortical thinning, hippocampal atrophy and Aβ deposition. In addition to carrying out surface-based morphological and metabolic mapping experiments, we stratified effects along neocortical and hippocampal resting-state functional connectome gradients derived from independent datasets. The cortical gradient depicts an axis of functional differentiation from sensory-motor regions to transmodal regions, whereas the hippocampal gradient recapitulates its long-axis. While age-related thinning and increased Aβ deposition occurred across the entire cortical topography, increased Aβ deposition was especially pronounced toward higher-order transmodal regions. Age-related atrophy was greater toward the posterior end of the hippocampal long-axis. No significant effect of age on Aβ deposition in the hippocampus was observed. Imaging markers correlated with behavioral measures of fluid intelligence and episodic memory in a topography-specific manner, confirmed using both univariate as well as multivariate analyses. Our results strengthen existing evidence of structural and metabolic change in the aging brain and support the use of connectivity gradients as a compact framework to analyze and conceptualize brain-based biomarkers of aging.

Journal ArticleDOI
TL;DR: Overall, changes associated with arterial stiffness indicates that the corpus callosum, the internal capsule and the corona radiata may be the most vulnerable regions to microvascular damage.

Journal ArticleDOI
TL;DR: It is concluded that fetal phosphorylation overlaps with AD in some residues, while others appear to be unique to AD, and that tau is capable of forming nontoxic aggregates in the developing brain.
Abstract: Tau hyperphosphorylation, mostly at serine (Ser) or threonine (Thr) residues, plays a key role in the pathogenesis of Alzheimer disease (AD) and other tauopathies. Rodent studies show similar hyperphosphorylation in the developing brain, which may be involved in regulating axonal growth and plasticity, but detailed human studies are lacking. Here, we examine tau phosphorylation by immunohistochemistry and immunoblotting in human fetal and adult autopsy brain tissue. Of the 20 cases with sufficient tissue preservation, 18 (90%) showed positive staining for S214 (pSer214), with the majority also positive for CP13 (pSer202), and PHF-1 (pSer396/pSer404). AT8 (pSer202/pThr205) and RZ3 (pThr231) were largely negative while PG5 (pSer409) was negative in all cases. Immunoblotting showed tau monomers with a similar staining pattern. We also observed phospho-tau aggregates in the fetal molecular layer, staining positively for S214, CP13, and PHF1 and negative for thioflavin S. These corresponded to high-molecular weight (∼150 kD) bands seen on Western blots probed with S214, PHF1, and PG5. We therefore conclude that fetal phosphorylation overlaps with AD in some residues, while others (e.g. T231, S409) appear to be unique to AD, and that tau is capable of forming nontoxic aggregates in the developing brain. These findings suggest that the fetal brain is resilient to formation of toxic aggregates, the mechanism for which may yield insights into the pathogenesis of tau aggregation and toxicity in the aging brain.

Journal ArticleDOI
TL;DR: Applying a women’s health lens to the study of the aging brain will advance knowledge of the neuroendocrine basis of cognitive aging and ensure that men and women get the full benefit of research efforts.
Abstract: A major challenge in neuroscience is to understand what happens to a brain as it ages. Such insights could make it possible to distinguish between individuals who will undergo typical aging and those at risk for neurodegenerative disease. Over the last quarter century, thousands of human brain imaging studies have probed the neural basis of age-related cognitive decline. "Aging" studies generally enroll adults over the age of 65, a historical precedent rooted in the average age of retirement. A consequence of this research tradition is that it overlooks one of the most significant neuroendocrine changes in a woman's life: the transition to menopause. The menopausal transition is marked by an overall decline in ovarian sex steroid production-up to 90% in the case of estradiol-a dramatic endocrine change that impacts multiple biological systems, including the brain. Despite sex differences in the risk for dementia, the influence that biological sex and sex hormones have on the aging brain is historically understudied, leaving a critical gap in our understanding of the aging process. In this Perspective article, we highlight the influence that endocrine factors have on the aging brain. We devote particular attention to the neural and cognitive changes that unfold in the middle decade of life, as a function of reproductive aging. We then consider emerging evidence from animal and human studies that other endocrine factors occurring earlier in life (e.g., pregnancy, hormonal birth control use) also shape the aging process. Applying a women's health lens to the study of the aging brain will advance knowledge of the neuroendocrine basis of cognitive aging and ensure that men and women get the full benefit of our research efforts.

Journal ArticleDOI
27 Jun 2019
TL;DR: A critical summary of this literature may reveal novel mechanisms by which physical activity influences brain health, which in turn may be leveraged to improve other aspects of functioning, including physical, cognitive, and mental health in late life.
Abstract: Aging is associated with changes in brain structure and function with some brain regions showing more age-related deterioration than others. There is evidence that regional changes in brain structure and function may affect the functioning of other, less- age-sensitive brain regions and lead to more global changes in brain efficiency and cognitive functioning. Fortunately, emerging evidence from health neuroscience suggests that age-related brain changes and associated cognitive declines may not be inevitable. In fact, they may even be reversible. Exercise is a particularly promising health behavior known to induce changes in regional brain structure and function in older adults. However, much less is known about how exercise affects the organization of brain networks in late life. The purpose of this review is to summarize what is known to date regarding the relationships between functional connectivity, exercise, fitness, and physical activity in aging. A critical summary of this literature may reveal novel mechanisms by which physical activity influences brain health, which in turn may be leveraged to improve other aspects of functioning, including physical, cognitive, and mental health in late life.

Journal ArticleDOI
TL;DR: This review focuses on aging related mechanisms that underlie DNA damage and repair in the neurovascular unit and introduces several novel strategies that target the genome integrity in the neuroscience unit to combat the vascular and neurodegenerative disorders in the aging brain.
Abstract: Progressive neurological deterioration poses enormous burden on the aging population with ischemic stroke and neurodegenerative disease patients, such as Alzheimers’ disease and Parkinson’s disease The past two decades have witnessed remarkable advances in the research of neurovascular unit dysfunction, which is emerging as an important pathological feature that underlies these neurological disorders Dysfunction of the unit allows penetration of blood-derived toxic proteins or leukocytes into the brain and contributes to white matter injury, disturbed neurovascular coupling and neuroinflammation, which all eventually lead to cognitive dysfunction Recent evidences suggest that aging-related oxidative stress, accumulated DNA damage and impaired DNA repair capacities compromises the genome integrity not only in neurons, but also in other cell types of the neurovascular unit, such as endothelial cells, astrocytes and pericytes Combating DNA damage or enhancing DNA repair capacities in the neurovascular unit represents a promising therapeutic strategy for vascular and neurodegenerative disorders In this review, we focus on aging related mechanisms that underlie DNA damage and repair in the neurovascular unit and introduce several novel strategies that target the genome integrity in the neurovascular unit to combat the vascular and neurodegenerative disorders in the aging brain

Journal ArticleDOI
Yan Qi1, Ruomiao Li1, Lina Xu1, Lianhong Yin1, Youwei Xu1, Xu Han1, Jinyong Peng1 
TL;DR: The results indicate that dioscin showed neuroprotective effect against brain aging via decreasing oxidative stress and inflammation, which should be developed as an efficient candidate in clinical to treat brain aging in the future.
Abstract: Our previous works have shown that dioscin, a natural product, has various pharmacological activities, however, its role in brain aging has not been reported. In the present study, in vitro H2O2-treated PC12 cells and in vivo d-galactose-induced aging rat models were used to evaluate the neuroprotective effect of dioscin on brain aging. The results showed that dioscin increased cell viability and protected PC12 cells against oxidative stress through decreasing reactive oxygen species (ROS) and lactate dehydrogenase (LDH) levels. In vivo, dioscin markedly improved the spatial learning ability and memory of aging rats, reduced the protein carbonyl content and aging cell numbers, restored the levels of superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GSH-Px), malondialdehyde (MDA) and nitric oxide synthase (NOS) in brain tissue, and reversed the histopathological structure changes of nerve cells. Mechanism studies showed that dioscin markedly adjusted the MAPK and Nrf2/ARE signalling pathways to decrease oxidative stress. Additionally, dioscin also significantly decreased inflammation by inhibiting the mRNA or protein levels of TNF-α, IL-1β, IL-6, CYP2E1 and HMGB1. Taken together, these results indicate that dioscin showed neuroprotective effect against brain aging via decreasing oxidative stress and inflammation, which should be developed as an efficient candidate in clinical to treat brain aging in the future.

Journal ArticleDOI
TL;DR: Examination of in vivo data from HIV-infected patients and animal models and the in vitro experiments that show how protein complexes between HIV-Tat and amyloid β occur through novel protein-protein interactions and how HIV-tat may influence the pathways for amyloids β production, degradation, phagocytosis, and transport are examined.
Abstract: In patients infected with the human immunodeficiency virus (HIV), the HIV-Tat protein may be continually produced despite adequate antiretroviral therapy. As the HIV-infected population is aging, it is becoming increasingly important to understand how HIV-Tat may interact with proteins such as amyloid β and Tau which accumulate in the aging brain and eventually result in Alzheimer's disease. In this review, we examine the in vivo data from HIV-infected patients and animal models and the in vitro experiments that show how protein complexes between HIV-Tat and amyloid β occur through novel protein-protein interactions and how HIV-Tat may influence the pathways for amyloid β production, degradation, phagocytosis, and transport. HIV-Tat may also induce Tau phosphorylation through a cascade of cellular processes that lead to the formation of neurofibrillary tangles, another hallmark of Alzheimer's disease. We also identify gaps in knowledge and future directions for research. Available evidence suggests that HIV-Tat may accelerate Alzheimer-like pathology in patients with HIV infection which cannot be impacted by current antiretroviral therapy.

Journal ArticleDOI
TL;DR: Examination of synapses and synaptic mitochondria of the CA1 region of the hippocampal layer in young-adult and old rats by means of a computer-assisted image analysis technique demonstrates age-dependent changes in the morphology ofaptic mitochondria that may underlie declines in age-related synaptic function and may couple to age- dependent loss of synapse.
Abstract: The brain is sensitive to aging-related morphological changes, where many neurodegenerative diseases manifest accompanied by a reduction in memory. The hippocampus is especially vulnerable to damage at an early stage of aging. The present transmission electron microscopy study examined the synapses and synaptic mitochondria of the CA1 region of the hippocampal layer in young-adult and old rats by means of a computer-assisted image analysis technique. Comparing young-adult (10 months of age) and old (22 months) male Fischer (CDF) rats, the total numerical density of synapses was significantly lower in aged rats than in the young adults. This age-related synaptic loss involved degenerative changes in the synaptic architectonic organization, including damage to mitochondria in both pre- and post-synaptic compartments. The number of asymmetric synapses with concave curvature decreased with age, while the number of asymmetric synapses with flat and convex curvatures increased. Old rats had a greater number of damaged mitochondria in their synapses, and most of this was type II and type III mitochondrial structural damage. These results demonstrate age-dependent changes in the morphology of synaptic mitochondria that may underlie declines in age-related synaptic function and may couple to age-dependent loss of synapses.

Journal ArticleDOI
01 Jul 2019
TL;DR: Results indicated that the progression of cognitive impairment is indeed affected by changes in microbiota induced by probiotics and prebiotics, and potential future applications center around combatting neurodegeneration and inflammation associated not only with aging but also with the damaging posttraumatic effects of ischemic stroke.
Abstract: The process of aging underlies many degenerative disorders that arise in the living body, including gradual neuronal loss of the hippocampus that often leads to decline in both memory and cognition. Recent evidence has shown a significant connection between gut microbiota and brain function, as butyrate production by microorganisms is believed to activate the secretion of brain-derived neurotrophic factor (BDNF). To investigate whether modification of intestinal microbiota could impact cognitive decline in the aging brain, Romo-Araiza et al. conducted a study to test how probiotic and prebiotic supplementation impacted spatial and associative memory in middle-aged rats. Their results showed that rats supplemented with the symbiotic (both probiotic and prebiotic) treatment performed significantly better than other groups in the spatial memory test, though not in that of associative memory. Their data also reported that this improvement correlated with increased levels of BDNF, decreased levels of pro-inflammatory cytokines, and better electrophysiological outcomes in the hippocampi of the symbiotic group. Thus, the results indicated that the progression of cognitive impairment is indeed affected by changes in microbiota induced by probiotics and prebiotics. Potential future applications of these findings center around combatting neurodegeneration and inflammation associated not only with aging but also with the damaging posttraumatic effects of ischemic stroke.

Journal ArticleDOI
TL;DR: It is suggested that serum expression of AD-related miRNAs are biologically meaningful in aging and may play a role as biomarkers of cerebral vulnerability in late life.
Abstract: Evidence has shown that microRNAs (miRNAs) are involved in molecular pathways responsible for aging and prevalent aging-related chronic diseases. However, the lack of research linking circulating levels of miRNAs to changes in the aging brain hampers clinical translation. Here, we have investigated if serum expression of brain-enriched miRNAs that have been proposed as potential biomarkers in Alzheimer's disease (AD) (miR-9, miR-29b, miR-34a, miR-125b, and miR-146a) are also associated with cognitive functioning and changes of the cerebral cortex in normal elderly subjects. Results revealed that candidate miRNAs were linked to changes in cortical thickness (miR-9, miR-29b, miR-34a, and miR-125b), cortical glucose metabolism (miR-29b, miR-125b, and miR-146a), and cognitive performance (miR-9, miR-34a, and miR-125b). While both miR-29b and miR-125b were related to aging-related structural and metabolic cortical changes, only expression levels of miR-125b were associated with patterns of glucose consumption shown by cortical regions that correlated with executive function. Together, these findings suggest that serum expression of AD-related miRNAs are biologically meaningful in aging and may play a role as biomarkers of cerebral vulnerability in late life.