scispace - formally typeset
Search or ask a question

Showing papers on "ATP citrate lyase published in 2021"


Journal ArticleDOI
30 Oct 2021-Cells
TL;DR: In this article, the role of ATP citrate lyase (ACLY) in NF-κB acetylation and its full activation in human PBMC-derived macrophages was investigated.
Abstract: Macrophage stimulation by pathogen-associated molecular patterns (PAMPs) like lipopolysaccharide (LPS) or lipoteichoic acid (LTA) drives a proinflammatory phenotype and induces a metabolic reprogramming to sustain the cell’s function. Nevertheless, the relationship between metabolic shifts and gene expression remains poorly explored. In this context, the metabolic enzyme ATP citrate lyase (ACLY), the producer of citrate-derived acetyl-coenzyme A (CoA), plays a critical role in supporting a proinflammatory response. Through immunocytochemistry and cytosol–nucleus fractionation, we found a short-term ACLY nuclear translocation. Protein immunoprecipitation unveiled the role of nuclear ACLY in NF-κB acetylation and in turn its full activation in human PBMC-derived macrophages. Notably, sepsis in the early hyperinflammatory phase triggers ACLY-mediated NF-κB acetylation. The ACLY/NF-κB axis increases the expression levels of proinflammatory genes, including SLC25A1—which encodes the mitochondrial citrate carrier—and ACLY, thus promoting the existence of a proinflammatory loop involving SLC25A1 and ACLY genes.

17 citations


Journal ArticleDOI
TL;DR: In this article, the role of ACLY in supporting de novo lipogenesis in immune cells as well as on its impact on epigenetic alterations has been explored, where ACLY contributes to epigenetic regulation through histone acetylation, which is increasingly appreciated.
Abstract: Studies over the past decade have revealed that metabolism profoundly influences immune responses. In particular, metabolism causes epigenetic regulation of gene expression, as a growing number of metabolic intermediates are substrates for histone post-translational modifications altering chromatin structure. One of these substrates is acetyl-coenzyme A (CoA), which donates an acetyl group for histone acetylation. Cytosolic acetyl-CoA is also a critical substrate for de novo synthesis of fatty acids and sterols necessary for rapid cellular growth. One of the main enzymes catalyzing cytosolic acetyl-CoA formation is ATP-citrate lyase (ACLY). In addition to its classical function in the provision of acetyl-CoA for de novo lipogenesis, ACLY contributes to epigenetic regulation through histone acetylation, which is increasingly appreciated. In this review we explore the current knowledge of ACLY and acetyl-CoA in mediating innate and adaptive immune responses. We focus on the role of ACLY in supporting de novo lipogenesis in immune cells as well as on its impact on epigenetic alterations. Moreover, we summarize alternative sources of acetyl-CoA and their contribution to metabolic and epigenetic regulation in cells of the immune system.

16 citations


Journal ArticleDOI
TL;DR: In this paper, the authors outline the possibilities of targeting ATP-citrate lyase and describe the future needs to translate these findings to the clinic and discuss the potential of targeting macrophages in atherosclerosis.

14 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that ATAT1, the enzyme responsible for acetylating a-tubulin, receives acetyl groups from ATP citrate lyase whose stability is regulated by Elongator, a protein mutated in the neuronal disease Familial dysautonomia.
Abstract: Microtubule (MT)-based transport is an evolutionary conserved process finely tuned by posttranslational modifications. Among them, α-tubulin acetylation, primarily catalyzed by a vesicular pool of α-tubulin N-acetyltransferase 1 (Atat1), promotes the recruitment and processivity of molecular motors along MT tracks. However, the mechanism that controls Atat1 activity remains poorly understood. Here, we show that ATP-citrate lyase (Acly) is enriched in vesicles and provide Acetyl-Coenzyme-A (Acetyl-CoA) to Atat1. In addition, we showed that Acly expression is reduced upon loss of Elongator activity, further connecting Elongator to Atat1 in a pathway regulating α-tubulin acetylation and MT-dependent transport in projection neurons, across species. Remarkably, comparable defects occur in fibroblasts from Familial Dysautonomia (FD) patients bearing an autosomal recessive mutation in the gene coding for the Elongator subunit ELP1. Our data may thus shine light on the pathophysiological mechanisms underlying FD. Microtubule tracks are important for the transport of molecules within axons. Here, the authors show that ATAT1, the enzyme responsible for acetylating a-tubulin, receives acetyl groups from ATP citrate lyase whose stability is regulated by Elongator, a protein mutated in the neuronal disease Familial dysautonomia.

11 citations


Journal ArticleDOI
TL;DR: In this article, six undescribed clerodane diterpenoids, dodovisins A−F, together with nine known ones, were isolated from the aerial parts of Dodonaea viscosa (L.) Jacq.

11 citations


Journal ArticleDOI
01 Jan 2021
TL;DR: In this paper, the effect of ACLY inhibitor Bempedoic acid in long term HFD induced NASH animal model to understand the pharmacological benefits and associated mechanism of action of this newly approved drug in NASH.
Abstract: Non-alcoholic fatty liver disease (NAFLD) and Non-alcoholic steatohepatitis (NASH) are chronic liver disorders, the prevalence of which is increasing worldwide. Long term High Fat Diet (HFD) induced NASH animal models closely mimic the characteristics of human NASH and hence used by investigators as a model system for studying the mechanism of action of new drugs. Bempedoic acid (ETC-1002), a ATP citrate lyase (ACLY) inhibitor that lowers the LDL cholesterol was recently approved by US FDA for the treatment of heterozygous familial hypercholesterolemia (HeFH) and established atherosclerotic cardiovascular disease (ASCVD). ACLY is one of the genes modulated in NASH patients and hence we studied the effect of ACLY inhibitor Bempedoic acid in long term HFD induced NASH animal model to understand the pharmacological benefits and the associated mechanism of action of this newly approved drug in NASH. Mice fed with 60% Kcal High Fat Diet for 32 weeks were used for the study and the animals were given Bempedoic acid for 5 weeks at doses of 10 ​mg ​kg−1, po, qd, and 30 ​mg ​kg−1, po, qd. Bempedoic acid treatment resulted in inhibition of body weight gain and improved the glycemic control. Bempedoic acid treated group showed statistically significant reduction in plasma ALT, AST, hepatic triglycerides (TG) and total cholesterol (TC), along with statistically significant reduction in steatosis score by histological analysis. Hepatic gene expression analysis showed significant reduction in inflammatory and fibrotic genes such as Mcp-1/Ccl2, Timp-1 & Col1α1. Histological analysis showed significant improvement in NAS score. Overall, Bempedoic acid alleviated HFD induced Non-Alcoholic Steatohepatitis through inhibition of body weight gain, improvement in glycemic control, reduction of hepatic triglycerides & total cholesterol, modulation of inflammatory & fibrotic genes, and improvement in NAS score. Hence, Bempedoic acid can be a potential therapeutic option for metabolic syndrome and NASH.

10 citations


Journal ArticleDOI
TL;DR: Curcumin, a widely accepted dietary polyphenol, can attenuate lipid accumulation in NAFLD as discussed by the authors, which can be used to prevent NASD in oleic and palmitic acid (OPA)-induced primary mouse hepatocytes and high-fat plus high-fructose diet (HFHFD)-induced mice.
Abstract: Upregulated de novo lipogenesis (DNL) plays a pivotal role in the progress of the nonalcoholic fatty liver disease (NAFLD). Cytoplasmic citrate flux, mediated by plasma membrane citrate transporter (SLC13A5), mitochondrial citrate carrier (SLC25A1), and ATP-dependent citrate lyase (ACLY), determines the central carbon source for acetyl-CoA required in DNL. Curcumin, a widely accepted dietary polyphenol, can attenuate lipid accumulation in NAFLD. Here, we first investigated the lipid-lowering effect of curcumin against NAFLD in oleic and palmitic acid (OPA)-induced primary mouse hepatocytes and high-fat plus high-fructose diet (HFHFD)-induced mice. Curcumin profoundly attenuated OPA- or HFHFD-induced hyperlipidemia and aberrant hepatic lipid deposition via modulating the expression and function of SLC13A5 and ACLY. The possible mechanism of curcumin on the citrate pathway was investigated using HepG2 cells, HEK293T cells transfected with human SLC13A5, and recombinant human ACLY. In OPA-stimulated HepG2 cells, curcumin rectified the dysregulated expression of SLC13A5/ACLY possibly via the AMPK-mTOR signaling pathway. Besides, curcumin also functionally inhibited both citrate transport and metabolism mediated by SLC13A5 and ACLY, respectively. These findings confirm that curcumin improves the lipid accumulation in the liver by blocking citrate disposition and hence may be used to prevent NAFLD.

10 citations


Journal ArticleDOI
Yuting Yan1, Yan Zhou1, Juntao Li1, Zhongnan Zheng1, Yabin Hu1, Lei Li1, Wei Wu1 
TL;DR: In this paper, the sulforaphane (SFN) inhibited autophagy leading to apoptosis in human non-small cell lung cancer (NSCLC) cells, but the underlying subcellular mechanisms were unknown.
Abstract: We previously demonstrated that sulforaphane (SFN) inhibited autophagy leading to apoptosis in human non-small cell lung cancer (NSCLC) cells, but the underlying subcellular mechanisms were unknown. Hereby, high-performance liquid chromatography-tandem mass spectrometry uncovered that SFN regulated the production of lipoproteins, and microtubule- and autophagy-associated proteins. Further, highly expressed fatty acid synthase (FASN) contributed to cancer malignancy and poor prognosis. Results showed that SFN depolymerized microtubules, downregulated FASN, and decreased its binding to α-tubulin; SFN downregulated FASN, acetyl CoA carboxylase (ACACA), and ATP citrate lyase (ACLY) via activating proteasomes and downregulating transcriptional factor SREBP1; SFN inhibited the interactions among α-tubulin and FASN, ACACA, and ACLY; SFN decreased the amount of intracellular fatty acid (FA) and mitochondrial phospholipids; and knockdown of FASN decreased mitochondrial membrane potential (ΔΨm) and increased reactive oxygen species, mitochondrial abnormality, and apoptosis. Further, SFN downregulated mitophagy-associated proteins Bnip3 and NIX, and upregulated mitochondrial LC3 II/I. Transmission electron microscopy showed mitochondrial abnormality and accumulation of mitophagosomes in response to SFN. Combined with mitophagy inducer CCCP or autophagosome–lysosome fusion inhibitor Bafilomycin A1, we found that SFN inhibited mitophagosome–lysosome fusion leading to mitophagosome accumulation. SFN reduced the interaction between NIX and LC3 II/I, and reversed CCCP-caused FA increase. Furthermore, knockdown of α-tubulin downregulated NIX and BNIP3 production, and upregulated LC3 II/I. Besides, SFN reduced the interaction and colocalization between α-tubulin and NIX. Thus, SFN might cause apoptosis via inhibiting microtubule-mediated mitophagy. These results might give us a new insight into the mechanisms of SFN-caused apoptosis in the subcellular level.

9 citations


Journal ArticleDOI
TL;DR: In this paper, the authors identified the citrate pathway as a RWP target in carrying out its anti-inflammatory activity since RWP reduced CIC and ACLY protein levels, ACLY enzymatic activity, the cytosolic citrate concentration, and in turn ROS, NO·, PGE2, and histone acetylation levels.
Abstract: Phenolic compounds of red wine powder (RWP) extracted from the Italian red wine Aglianico del Vulture have been investigated for the potential immunomodulatory and anti-inflammatory capacity on human macrophages. These compounds reduce the secretion of IL-1β, IL-6, and TNF-α proinflammatory cytokines and increase the release of IL-10 anti-inflammatory cytokine induced by lipopolysaccharide (LPS). In addition, RWP restores Annexin A1 levels, thus involving activation of proresolutive pathways. Noteworthy, RWP lowers NF-κB protein levels, promoter activity, and nuclear translocation. As a consequence of NF-κB inhibition, reduced promoter activities of SLC25A1-encoding the mitochondrial citrate carrier (CIC)-and ATP citrate lyase (ACLY) metabolic genes have been observed. CIC, ACLY, and citrate are components of the citrate pathway: in LPS-activated macrophages, the mitochondrial citrate is exported by CIC into the cytosol where it is cleaved by ACLY in oxaloacetate and acetyl-CoA, precursors for ROS, NO·, and PGE2 inflammatory mediators. We identify the citrate pathway as a RWP target in carrying out its anti-inflammatory activity since RWP reduces CIC and ACLY protein levels, ACLY enzymatic activity, the cytosolic citrate concentration, and in turn ROS, NO·, PGE2, and histone acetylation levels. Overall findings suggest that RWP potentially restores macrophage homeostasis by suppressing inflammatory pathways and activating proresolutive processes.

8 citations



Journal ArticleDOI
W. Cai1, Y. Ji1, L. Han1, Jinglun Zhang1, Y. Ni1, Yue Cheng1, Yuanzhen Zhang1 
TL;DR: In this paper, the authors show that interference with METTL3 in dental pulp stem cells (DPSCs) inhibits cell proliferation and osteogenic differentiation, providing new ideas for the clinical application of stem cells and the intervention of metabolic bone diseases.
Abstract: N6-methyladenosine (m6A) is a eukaryotic messenger RNA modification catalyzed by methyltransferase-like 3 (METTL3), which is involved in various developmental and disease processes. However, the connection between the epigenetic modification of m6A and glucose metabolism during osteogenesis is still unclear. Here, we show that interference with METTL3 in dental pulp stem cells (DPSCs) inhibits cell proliferation and osteogenic differentiation. Moreover, transcriptome sequencing and metabolic testing were used to explore the mechanism between glucose metabolism and m6A modification in METTL3-knockdown DPSCs. Methylated RNA immunoprecipitation-quantitative polymerase chain reaction and RNA stability assays were used to determine the target genes of METTL3. Mechanistically, METTL3 directly interacts with ATP citrate lyase (ACLY) and a mitochondrial citrate transporter (SLC25A1) and then further affects the glycolytic pathway. M6A-mediated ACLY and SLC25A1 stability depends on the m6A readers IGF2BP2 and IGF2BP2/3, respectively. Our experiments uncovered the potential molecular mechanism of epigenetic modification in osteogenic differentiation, providing new ideas for the clinical application of stem cells and the intervention of metabolic bone diseases.

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors investigated the role of an E3 ligase SH3 domain-containing ring finger 2 (SH3RF2) in NAFLD and further explored the underlying mechanisms.

Journal ArticleDOI
TL;DR: In this article, nine undescribed acylphloroglucinol derivatives, oblatones A−I, along with three known ones, were isolated from Syzygium oblatum.

Journal ArticleDOI
09 Aug 2021
TL;DR: In this article, a mutant with greatly decreased lipid productivity, sr22, was obtained by an effective screening method using Percoll density gradient centrifugation, and the expression of citrate-mediated acyl-CoA synthesis related genes (ACL1, ACL2, ACC1, FAS1, and FAS2) was decreased in the sr22 mutant compared with that of the wild-type strain.
Abstract: The oleaginous yeast Lipomyces starkeyi is an excellent producer of triacylglycerol (TAG) as a feedstock for biodiesel production. To understand the regulation of TAG synthesis, we attempted to isolate mutants with decreased lipid productivity and analyze the expression of TAG synthesis-related genes in this study. A mutant with greatly decreased lipid productivity, sr22, was obtained by an effective screening method using Percoll density gradient centrifugation. The expression of citrate-mediated acyl-CoA synthesis-related genes (ACL1, ACL2, ACC1, FAS1, and FAS2) was decreased in the sr22 mutant compared with that of the wild-type strain. Together with a notion that L. starkeyi mutants with increased lipid productivities had increased gene expression, there was a correlation between the expression of these genes and TAG synthesis. To clarify the importance of citrate-mediated acyl-CoA synthesis pathway on TAG synthesis, we also constructed a strain with no ATP-citrate lyase responsible for the first reaction of citrate-mediated acyl-CoA synthesis and investigated the importance of ATP-citrate lyase on TAG synthesis. The ATP-citrate lyase was required for the promotion of cell growth and TAG synthesis in a glucose medium. This study may provide opportunities for the development of an efficient TAG synthesis for biodiesel production.

Journal ArticleDOI
TL;DR: In this article, three diets containing 7.3%, 17.5%, and 27.5% of carbohydrates were provided to Chinese perch for 56 days, and the results showed that MC and HC groups exhibited an increase in weight gain (WG) and hepatic glycogen content, and a decrease in feed conversion efficiency, compared with the LC group.
Abstract: There are great differences in metabolic responses to different levels of carbohydrate among different carnivorous fish species. To explore metabolic responses of Chinese perch to moderate and high level of dietary carbohydrates, three diets containing 7.3% (LC), 17.5% (MC), and 27.5% (HC) of carbohydrates were provided to Chinese perch for 56 days. The results showed that MC and HC groups exhibited an increase in weight gain (WG) and hepatic glycogen content, and a decrease in feed conversion efficiency, compared with the LC group. The MC and HC groups also showed the increase in mRNA levels of phosphofructokinase and citrate synthase related to the aerobic oxidation pathway, which might be responsible for the increase in WG. Moreover, compared with the LC group, the HC group exhibited high levels of plasma indices (glucose, pyruvic acid, lactic acid, total triglyceride, total cholesterol, and low-density lipoprotein) and liver lipid resulting from the increased mRNA levels of fatty acid synthesis–related genes (ATP citrate lyase, acetyl-CoA carboxylase α, and fatty acid synthase), low level of crude protein caused by inhibition of TOR pathway, and liver damage induced by low antioxidant capacity and infiltration of inflammatory cells, but the MC group did not. The above results indicated that 17.5% dietary carbohydrate might be utilized effectively in Chinese perch and part carbohydrates were converted into glycogen to maintain glucose homeostasis; 27.5% dietary carbohydrate could not be fully utilized. The 27.5% carbohydrate diet induced the up-regulation of aerobic oxidation, glycogen synthesis, and fat synthesis pathways which might not be sufficient to maintain glucose homeostasis.

Journal ArticleDOI
TL;DR: In this article, the potential role of epicatechin gallate in prostate cancer cells was evaluated and the results indicated that epicatech gallate downregulated the expression of acetyl-CoA carboxylase, ATP citrate lyase, and fatty acid synthase.
Abstract: Lipid metabolism disorder caused by the upregulation of lipogenic genes is a typical feature of prostate cancer. The synthesis of fatty acids is enhanced to accelerate the development of prostate cancer and is considered as a potential therapeutic target. Epicatechin gallate, an active compound of green tea, has been reported to modulate lipid metabolism. In this research, the potential role of epicatechin gallate in prostate cancer cells was evaluated. The results indicated that epicatechin gallate downregulates the expression of acetyl-CoA carboxylase, ATP citrate lyase, and fatty acid synthase in prostate cancer cells and prostate xenograft tissues, suggesting that epicatechin gallate can inhibit de novo fatty acid synthesis. Moreover, epicatechin gallate significantly restrains the migration rather than the viability of prostate cancer cells. PI3K/AKT/mTOR signaling pathway, which exhibits regulatory effect on lipogenesis, is also inhibited under epicatechin gallate treatment, while pretreatment with AKT activator SC79 or mTOR activator MHY1485 blocks the inhibitory effect of epicatechin gallate on the expression of lipogenic genes and the migration of prostate cancer cells. In conclusion, this study revealed that epicatechin gallate impairs the synthesis of fatty acids via inhibition PI3K/AKT/mTOR signaling pathway and then attenuates the migration of prostate cancer cells.

Journal ArticleDOI
TL;DR: A pharmacophore-based virtual screening protocol with the aid of hierarchical docking, consensus docking, molecular dynamics simulations and ligand-protein binding free energy calculations led to the identification of compound VS1, which showed a moderate but promising inhibitory activity, demonstrating to be 2.5 times more potent than reference inhibitor 2-hydroxycitrate.
Abstract: ATP citrate lyase (ACLY) is an important enzyme that catalyzes the conversion of citrate to acetyl-CoA in normal cells, facilitating the de novo fatty acid synthesis. Lipids and fatty acids were fo...

Journal ArticleDOI
TL;DR: The transgenic E. coli strain exhibited enhanced growth and the ability to assimilate external inorganic carbon with a gaseous CO2 supply, proving that the strain is able to undergo anaerobic respiration, using CO2 as the major carbon source.
Abstract: The enzymatic mechanisms of carbon fixation by autotrophs, such as the reductive tricarboxylic acid cycle (rTCA), have inspired biotechnological approaches to producing bio-based chemicals directly through CO2. To explore the possibility of constructing an rTCA cycle in Escherichia coli and to investigate their potential for CO2 assimilation, a total of ten genes encoding the key rTCA cycle enzymes, including α-ketoglutarate:ferredoxin oxidoreductase, ATP-dependent citrate lyase, and fumarate reductase/succinate dehydrogenase, were cloned into E. coli. The transgenic E. coli strain exhibited enhanced growth and the ability to assimilate external inorganic carbon with a gaseous CO2 supply. Further experiments conducted in sugar-free medium containing hydrogen as the electron donor and dimethyl sulfoxide (DMSO) as the electron acceptor proved that the strain is able to undergo anaerobic respiration, using CO2 as the major carbon source. The transgenic stain demonstrated CO2-enhanced growth, whereas the genes involved in chemotaxis, flagellar assembly, and acid-resistance were upregulated under the anaerobic respiration. Furthermore, metabolomic analysis demonstrated that the total concentrations of ATP, ADP, and AMP in the transgenic strain were higher than those in the vector control strain and these results coincided with the enhanced growth. Our approach offers a novel strategy to engineer E. coli for assimilating external gaseous CO2.


Journal ArticleDOI
TL;DR: In this article, the authors conducted comparative proteomic analyses with the oleaginous yeast, Yarrowia lipolytica, grown in either nitrogen-sufficient rich media or nitrogen-limited minimal media.
Abstract: Oleaginous yeasts have the ability to store greater than 20% of their mass as neutral lipids, in the form of triacylglycerides. The ATP citrate lyase is thought to play a key role in triacylglyceride synthesis, but the relationship between expression levels of this and other related enzymes is not well understood in the role of total lipid accumulation conferring the oleaginous phenotype. We conducted comparative proteomic analyses with the oleaginous yeast, Yarrowia lipolytica, grown in either nitrogen-sufficient rich media or nitrogen-limited minimal media. Total proteins extracted from cells collected during logarithmic and late stationary growth phases were analyzed by 1D liquid chromatography, followed by mass spectroscopy. The ATP citrate lyase enzyme was expressed at similar concentrations in both conditions, in both logarithmic and stationary phase, but many upstream and downstream enzymes showed drastically different expression levels. In non-lipogenic conditions, several pyruvate enzymes were expressed at higher concentration. These enzymes, especially the pyruvate decarboxylase and pyruvate dehydrogenase, may be regulating carbon flux away from central metabolism and reducing the amount of citrate being produced in the mitochondria. While crucial for the oleaginous phenotype, the constitutively expressed ATP citrate lyase appears to cleave citrate in response to carbon flux upstream from other enzymes creating the oleaginous phenotype.

Journal ArticleDOI
TL;DR: In this paper, it was shown that depletion of DmATPCL also affects the organization of acrosome and suggest a role for this enzyme in the assembly of Golgi-derived structures during Drosophila spermatogenesis.
Abstract: During spermatogenesis, the Golgi apparatus serves important roles including the formation of the acrosome, which is a sperm-specific organelle essential for fertilization We have previously demonstrated that D melanogaster ATP-dependent Citrate Lyase (ATPCL) is required for spindle organization, cytokinesis, and fusome assembly during male meiosis, mainly due to is activity on fatty acid biosynthesis Here, we show that depletion of DmATPCL also affects the organization of acrosome and suggest a role for this enzyme in the assembly of Golgi-derived structures during Drosophila spermatogenesis