scispace - formally typeset
Search or ask a question

Showing papers on "Domain (software engineering) published in 2020"


Journal ArticleDOI
TL;DR: A survey will compare single-source and typically homogeneous unsupervised deep domain adaptation approaches, combining the powerful, hierarchical representations from deep learning with domain adaptation to reduce reliance on potentially costly target data labels.
Abstract: Deep learning has produced state-of-the-art results for a variety of tasks. While such approaches for supervised learning have performed well, they assume that training and testing data are drawn from the same distribution, which may not always be the case. As a complement to this challenge, single-source unsupervised domain adaptation can handle situations where a network is trained on labeled data from a source domain and unlabeled data from a related but different target domain with the goal of performing well at test-time on the target domain. Many single-source and typically homogeneous unsupervised deep domain adaptation approaches have thus been developed, combining the powerful, hierarchical representations from deep learning with domain adaptation to reduce reliance on potentially costly target data labels. This survey will compare these approaches by examining alternative methods, the unique and common elements, results, and theoretical insights. We follow this with a look at application areas and open research directions.

496 citations


Posted Content
TL;DR: This paper implements DomainBed, a testbed for domain generalization including seven multi-domain datasets, nine baseline algorithms, and three model selection criteria, and finds that, when carefully implemented, empirical risk minimization shows state-of-the-art performance across all datasets.
Abstract: The goal of domain generalization algorithms is to predict well on distributions different from those seen during training While a myriad of domain generalization algorithms exist, inconsistencies in experimental conditions -- datasets, architectures, and model selection criteria -- render fair and realistic comparisons difficult In this paper, we are interested in understanding how useful domain generalization algorithms are in realistic settings As a first step, we realize that model selection is non-trivial for domain generalization tasks Contrary to prior work, we argue that domain generalization algorithms without a model selection strategy should be regarded as incomplete Next, we implement DomainBed, a testbed for domain generalization including seven multi-domain datasets, nine baseline algorithms, and three model selection criteria We conduct extensive experiments using DomainBed and find that, when carefully implemented, empirical risk minimization shows state-of-the-art performance across all datasets Looking forward, we hope that the release of DomainBed, along with contributions from fellow researchers, will streamline reproducible and rigorous research in domain generalization

492 citations


Proceedings Article
12 Jul 2020
TL;DR: This work proposes a simple yet generic representation learning framework, named SHOT, which freezes the classifier module (hypothesis) of the source model and learns the target-specific feature extraction module by exploiting both information maximization and self-supervised pseudo-labeling to implicitly align representations from the target domains to the source hypothesis.
Abstract: Unsupervised domain adaptation (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain. Prior UDA methods typically require to access the source data when learning to adapt the model, making them risky and inefficient for decentralized private data. This work tackles a practical setting where only a trained source model is available and investigates how we can effectively utilize such a model without source data to solve UDA problems. We propose a simple yet generic representation learning framework, named \emph{Source HypOthesis Transfer} (SHOT). SHOT freezes the classifier module (hypothesis) of the source model and learns the target-specific feature extraction module by exploiting both information maximization and self-supervised pseudo-labeling to implicitly align representations from the target domains to the source hypothesis. To verify its versatility, we evaluate SHOT in a variety of adaptation cases including closed-set, partial-set, and open-set domain adaptation. Experiments indicate that SHOT yields state-of-the-art results among multiple domain adaptation benchmarks.

457 citations


Posted Content
TL;DR: The framework enables one-sided translation in the unpaired image-to-image translation setting, while improving quality and reducing training time, and can be extended to the training setting where each "domain" is only a single image.
Abstract: In image-to-image translation, each patch in the output should reflect the content of the corresponding patch in the input, independent of domain. We propose a straightforward method for doing so -- maximizing mutual information between the two, using a framework based on contrastive learning. The method encourages two elements (corresponding patches) to map to a similar point in a learned feature space, relative to other elements (other patches) in the dataset, referred to as negatives. We explore several critical design choices for making contrastive learning effective in the image synthesis setting. Notably, we use a multilayer, patch-based approach, rather than operate on entire images. Furthermore, we draw negatives from within the input image itself, rather than from the rest of the dataset. We demonstrate that our framework enables one-sided translation in the unpaired image-to-image translation setting, while improving quality and reducing training time. In addition, our method can even be extended to the training setting where each "domain" is only a single image.

420 citations


Journal ArticleDOI
TL;DR: This work introduces a new technique and framework, known as federated transfer learning (FTL), to improve statistical modeling under a data federation, which allows knowledge to be shared without compromising user privacy and enables complementaryknowledge to be transferred across domains in a data Federation.
Abstract: Machine learning relies on the availability of vast amounts of data for training. However, in reality, data are mostly scattered across different organizations and cannot be easily integrated due to many legal and practical constraints. To address this important challenge in the field of machine learning, we introduce a new technique and framework, known as federated transfer learning (FTL), to improve statistical modeling under a data federation. FTL allows knowledge to be shared without compromising user privacy and enables complementary knowledge to be transferred across domains in a data federation, thereby enabling a target-domain party to build flexible and effective models by leveraging rich labels from a source domain. This framework requires minimal modifications to the existing model structure and provides the same level of accuracy as the nonprivacy-preserving transfer learning. It is flexible and can be effectively adapted to various secure multiparty machine learning tasks.

338 citations


Journal ArticleDOI
TL;DR: Li et al. as mentioned in this paper proposed a self-training framework for unsupervised domain adaptive re-ID, which iteratively makes guesses for unlabeled target data based on an encoder and trains the encoder based on the guessed labels.

333 citations


Journal ArticleDOI
03 Apr 2020
TL;DR: This paper presents adversarial domain adaptation with domain mixup (DM-ADA), which guarantees domain-invariance in a more continuous latent space and guides the domain discriminator in judging samples' difference relative to source and target domains.
Abstract: Recent works on domain adaptation reveal the effectiveness of adversarial learning on filling the discrepancy between source and target domains. However, two common limitations exist in current adversarial-learning-based methods. First, samples from two domains alone are not sufficient to ensure domain-invariance at most part of latent space. Second, the domain discriminator involved in these methods can only judge real or fake with the guidance of hard label, while it is more reasonable to use soft scores to evaluate the generated images or features, i.e., to fully utilize the inter-domain information. In this paper, we present adversarial domain adaptation with domain mixup (DM-ADA), which guarantees domain-invariance in a more continuous latent space and guides the domain discriminator in judging samples' difference relative to source and target domains. Domain mixup is jointly conducted on pixel and feature level to improve the robustness of models. Extensive experiments prove that the proposed approach can achieve superior performance on tasks with various degrees of domain shift and data complexity.

297 citations


Journal ArticleDOI
TL;DR: A deep stacked transformation approach for domain generalization that can be generalized to the design of highly robust deep segmentation models for clinical deployment and reaches the performance of state-of theart fully supervised models that are trained and tested on their source domains.
Abstract: Recent advances in deep learning for medical image segmentation demonstrate expert-level accuracy. However, application of these models in clinically realistic environments can result in poor generalization and decreased accuracy, mainly due to the domain shift across different hospitals, scanner vendors, imaging protocols, and patient populations etc. Common transfer learning and domain adaptation techniques are proposed to address this bottleneck. However, these solutions require data (and annotations) from the target domain to retrain the model, and is therefore restrictive in practice for widespread model deployment. Ideally, we wish to have a trained (locked) model that can work uniformly well across unseen domains without further training. In this paper, we propose a deep stacked transformation approach for domain generalization. Specifically, a series of ${n}$ stacked transformations are applied to each image during network training. The underlying assumption is that the “expected” domain shift for a specific medical imaging modality could be simulated by applying extensive data augmentation on a single source domain, and consequently, a deep model trained on the augmented “big” data (BigAug) could generalize well on unseen domains. We exploit four surprisingly effective, but previously understudied, image-based characteristics for data augmentation to overcome the domain generalization problem. We train and evaluate the BigAug model (with ${n}={9}$ transformations) on three different 3D segmentation tasks (prostate gland, left atrial, left ventricle) covering two medical imaging modalities (MRI and ultrasound) involving eight publicly available challenge datasets. The results show that when training on relatively small dataset (n = 10~32 volumes, depending on the size of the available datasets) from a single source domain: (i) BigAug models degrade an average of 11%(Dice score change) from source to unseen domain, substantially better than conventional augmentation (degrading 39%) and CycleGAN-based domain adaptation method (degrading 25%), (ii) BigAug is better than “shallower” stacked transforms (i.e. those with fewer transforms) on unseen domains and demonstrates modest improvement to conventional augmentation on the source domain, (iii) after training with BigAug on one source domain, performance on an unseen domain is similar to training a model from scratch on that domain when using the same number of training samples. When training on large datasets (n = 465 volumes) with BigAug, (iv) application to unseen domains reaches the performance of state-of-the-art fully supervised models that are trained and tested on their source domains. These findings establish a strong benchmark for the study of domain generalization in medical imaging, and can be generalized to the design of highly robust deep segmentation models for clinical deployment.

251 citations


Proceedings ArticleDOI
14 Jun 2020
TL;DR: This work exploits the classical network flow formulation of MOT to define a fully differentiable framework based on Message Passing Networks (MPNs) and shows that learning in MOT does not need to be restricted to feature extraction, but it can also be applied to the data association step.
Abstract: Graphs offer a natural way to formulate Multiple Object Tracking (MOT) within the tracking-by-detection paradigm. However, they also introduce a major challenge for learning methods, as defining a model that can operate on such structured domain is not trivial. As a consequence, most learning-based work has been devoted to learning better features for MOT and then using these with well-established optimization frameworks. In this work, we exploit the classical network flow formulation of MOT to define a fully differentiable framework based on Message Passing Networks (MPNs). By operating directly on the graph domain, our method can reason globally over an entire set of detections and predict final solutions. Hence, we show that learning in MOT does not need to be restricted to feature extraction, but it can also be applied to the data association step. We show a significant improvement in both MOTA and IDF1 on three publicly available benchmarks. Our code is available at https://bit.ly/motsolv.

250 citations


Posted Content
TL;DR: A novel soft softmax-triplet loss is proposed to support learning with soft pseudo triplet labels for achieving the optimal domain adaptation performance in person re-identification models.
Abstract: Person re-identification (re-ID) aims at identifying the same persons' images across different cameras. However, domain diversities between different datasets pose an evident challenge for adapting the re-ID model trained on one dataset to another one. State-of-the-art unsupervised domain adaptation methods for person re-ID transferred the learned knowledge from the source domain by optimizing with pseudo labels created by clustering algorithms on the target domain. Although they achieved state-of-the-art performances, the inevitable label noise caused by the clustering procedure was ignored. Such noisy pseudo labels substantially hinders the model's capability on further improving feature representations on the target domain. In order to mitigate the effects of noisy pseudo labels, we propose to softly refine the pseudo labels in the target domain by proposing an unsupervised framework, Mutual Mean-Teaching (MMT), to learn better features from the target domain via off-line refined hard pseudo labels and on-line refined soft pseudo labels in an alternative training manner. In addition, the common practice is to adopt both the classification loss and the triplet loss jointly for achieving optimal performances in person re-ID models. However, conventional triplet loss cannot work with softly refined labels. To solve this problem, a novel soft softmax-triplet loss is proposed to support learning with soft pseudo triplet labels for achieving the optimal domain adaptation performance. The proposed MMT framework achieves considerable improvements of 14.4%, 18.2%, 13.1% and 16.4% mAP on Market-to-Duke, Duke-to-Market, Market-to-MSMT and Duke-to-MSMT unsupervised domain adaptation tasks. Code is available at this https URL.

233 citations


Journal ArticleDOI
03 Apr 2020
TL;DR: In this article, the authors propose a method that iteratively divides samples into latent domains via clustering, and then trains the domain-invariant feature extractor shared among the divided domains via adversarial learning.
Abstract: When domains, which represent underlying data distributions, vary during training and testing processes, deep neural networks suffer a drop in their performance. Domain generalization allows improvements in the generalization performance for unseen target domains by using multiple source domains. Conventional methods assume that the domain to which each sample belongs is known in training. However, many datasets, such as those collected via web crawling, contain a mixture of multiple latent domains, in which the domain of each sample is unknown. This paper introduces domain generalization using a mixture of multiple latent domains as a novel and more realistic scenario, where we try to train a domain-generalized model without using domain labels. To address this scenario, we propose a method that iteratively divides samples into latent domains via clustering, and which trains the domain-invariant feature extractor shared among the divided latent domains via adversarial learning. We assume that the latent domain of images is reflected in their style, and thus, utilize style features for clustering. By using these features, our proposed method successfully discovers latent domains and achieves domain generalization even if the domain labels are not given. Experiments show that our proposed method can train a domain-generalized model without using domain labels. Moreover, it outperforms conventional domain generalization methods, including those that utilize domain labels.

Journal ArticleDOI
TL;DR: It is argued that Hanabi elevates reasoning about the beliefs and intentions of other agents to the foreground and developing novel techniques for such theory of mind reasoning will not only be crucial for success in Hanabi, but also in broader collaborative efforts, especially those with human partners.

Posted Content
TL;DR: The proposed approach dynamically sets different confidence thresholds according to the prediction variance, rectifies the learning from noisy pseudo labels, and achieves significant improvements over the conventional pseudo label learning and yields competitive performance on all three benchmarks.
Abstract: This paper focuses on the unsupervised domain adaptation of transferring the knowledge from the source domain to the target domain in the context of semantic segmentation. Existing approaches usually regard the pseudo label as the ground truth to fully exploit the unlabeled target-domain data. Yet the pseudo labels of the target-domain data are usually predicted by the model trained on the source domain. Thus, the generated labels inevitably contain the incorrect prediction due to the discrepancy between the training domain and the test domain, which could be transferred to the final adapted model and largely compromises the training process. To overcome the problem, this paper proposes to explicitly estimate the prediction uncertainty during training to rectify the pseudo label learning for unsupervised semantic segmentation adaptation. Given the input image, the model outputs the semantic segmentation prediction as well as the uncertainty of the prediction. Specifically, we model the uncertainty via the prediction variance and involve the uncertainty into the optimization objective. To verify the effectiveness of the proposed method, we evaluate the proposed method on two prevalent synthetic-to-real semantic segmentation benchmarks, i.e., GTA5 -> Cityscapes and SYNTHIA -> Cityscapes, as well as one cross-city benchmark, i.e., Cityscapes -> Oxford RobotCar. We demonstrate through extensive experiments that the proposed approach (1) dynamically sets different confidence thresholds according to the prediction variance, (2) rectifies the learning from noisy pseudo labels, and (3) achieves significant improvements over the conventional pseudo label learning and yields competitive performance on all three benchmarks.

Journal ArticleDOI
TL;DR: This paper aims to explore the feasibility of applying both public blockchain and private blockchain technologies in the construction industry using two industry cases and provides insights to researchers and practitioners regarding the adoption of blockchain technology, especially in construction industry.

Proceedings ArticleDOI
23 Jun 2020
TL;DR: Empirical evidence shows that the proposed causal speech enhancement model, based on an encoder-decoder architecture with skip-connections, is capable of removing various kinds of background noise including stationary and non-stationary noises, as well as room reverb.
Abstract: We present a causal speech enhancement model working on the raw waveform that runs in real-time on a laptop CPU. The proposed model is based on an encoder-decoder architecture with skip-connections. It is optimized on both time and frequency domains, using multiple loss functions. Empirical evidence shows that it is capable of removing various kinds of background noise including stationary and non-stationary noises, as well as room reverb. Additionally, we suggest a set of data augmentation techniques applied directly on the raw waveform which further improve model performance and its generalization abilities. We perform evaluations on several standard benchmarks, both using objective metrics and human judgements. The proposed model matches state-of-the-art performance of both causal and non causal methods while working directly on the raw waveform.

Posted Content
TL;DR: This work proposes a novel self-paced contrastive learning framework with hybrid memory that outperforms state-of-the-arts on multiple domain adaptation tasks of object re-ID and even boosts the performance on the source domain without any extra annotations.
Abstract: Domain adaptive object re-ID aims to transfer the learned knowledge from the labeled source domain to the unlabeled target domain to tackle the open-class re-identification problems. Although state-of-the-art pseudo-label-based methods have achieved great success, they did not make full use of all valuable information because of the domain gap and unsatisfying clustering performance. To solve these problems, we propose a novel self-paced contrastive learning framework with hybrid memory. The hybrid memory dynamically generates source-domain class-level, target-domain cluster-level and un-clustered instance-level supervisory signals for learning feature representations. Different from the conventional contrastive learning strategy, the proposed framework jointly distinguishes source-domain classes, and target-domain clusters and un-clustered instances. Most importantly, the proposed self-paced method gradually creates more reliable clusters to refine the hybrid memory and learning targets, and is shown to be the key to our outstanding performance. Our method outperforms state-of-the-arts on multiple domain adaptation tasks of object re-ID and even boosts the performance on the source domain without any extra annotations. Our generalized version on unsupervised person re-ID surpasses state-of-the-art algorithms by considerable 16.2% and 14.6% on Market-1501 and DukeMTMC-reID benchmarks. Code is available at this https URL.

Proceedings ArticleDOI
01 Dec 2020
TL;DR: This survey reviews neural unsupervised domain adaptation techniques which do not require labeled target domain data, and revisits the notion of domain, and uncovers a bias in the type of Natural Language Processing tasks which received most attention.
Abstract: Deep neural networks excel at learning from labeled data and achieve state-of-the-art results on a wide array of Natural Language Processing tasks. In contrast, learning from unlabeled data, especially under domain shift, remains a challenge. Motivated by the latest advances, in this survey we review neural unsupervised domain adaptation techniques which do not require labeled target domain data. This is a more challenging yet a more widely applicable setup. We outline methods, from early traditional non-neural methods to pre-trained model transfer. We also revisit the notion of domain, and we uncover a bias in the type of Natural Language Processing tasks which received most attention. Lastly, we outline future directions, particularly the broader need for out-of-distribution generalization of future NLP.

Journal ArticleDOI
TL;DR: The aim of this study is to summarize the literature of the audio signal processing specially focusing on the feature extraction techniques, and the temporal domain, frequency domain, cepstral domain, wavelet domain and time-frequency domain features are discussed in detail.

Book ChapterDOI
TL;DR: This paper focuses on unsupervised domain adaptation, where the labels are only available in the source domain, and presents some successful shallow and deep domain adaptation approaches that aim to deal with domain adaptation problems.
Abstract: Classical machine learning assumes that the training and test sets come from the same distributions. Therefore, a model learned from the labeled training data is expected to perform well on the test data. However, this assumption may not always hold in real-world applications where the training and the test data fall from different distributions, due to many factors, e.g., collecting the training and test sets from different sources or having an outdated training set due to the change of data over time. In this case, there would be a discrepancy across domain distributions, and naively applying the trained model on the new dataset may cause degradation in the performance. Domain adaptation is a subfield within machine learning that aims to cope with these types of problems by aligning the disparity between domains such that the trained model can be generalized into the domain of interest. This paper focuses on unsupervised domain adaptation, where the labels are only available in the source domain. It addresses the categorization of domain adaptation from different viewpoints. Besides, it presents some successful shallow and deep domain adaptation approaches that aim to deal with domain adaptation problems.

Journal ArticleDOI
Yang Zhao1, Chaobo Zhang1, Yiwen Zhang1, Zihao Wang1, Junyang Li1 
01 Apr 2020
TL;DR: A comprehensive literature review of the applications of data mining technologies in this domain and suggestions for future researches are proposed towards effective and efficient data mining solutions for building energy systems.
Abstract: With the advent of the era of big data, buildings have become not only energy-intensive but also data-intensive. Data mining technologies have been widely utilized to release the values of massive amounts of building operation data with an aim of improving the operation performance of building energy systems. This paper aims at making a comprehensive literature review of the applications of data mining technologies in this domain. In general, data mining technologies can be classified into two categories, i.e., supervised data mining technologies and unsupervised data mining technologies. In this field, supervised data mining technologies are usually utilized for building energy load prediction and fault detection/diagnosis. And unsupervised data mining technologies are usually utilized for building operation pattern identification and fault detection/diagnosis. Comprehensive discussions are made about the strengths and shortcomings of the data mining-based methods. Based on this review, suggestions for future researches are proposed towards effective and efficient data mining solutions for building energy systems.

Journal ArticleDOI
TL;DR: A new data-driven approach for domain adaptation in prognostics using Long Short-Term Neural Networks (LSTM) is proposed that uses a time window approach to extract temporal information from time-series data in a source domain with observed RUL values and a target domain containing only sensor information.

Proceedings Article
30 Apr 2020
TL;DR: In this article, the authors proposed an unsupervised framework, Mutual Mean-Teaching (MMT), to learn better features from the target domain via off-line refined hard pseudo labels and online refined soft pseudo labels in an alternative training manner.
Abstract: Person re-identification (re-ID) aims at identifying the same persons' images across different cameras. However, domain diversities between different datasets pose an evident challenge for adapting the re-ID model trained on one dataset to another one. State-of-the-art unsupervised domain adaptation methods for person re-ID transferred the learned knowledge from the source domain by optimizing with pseudo labels created by clustering algorithms on the target domain. Although they achieved state-of-the-art performances, the inevitable label noise caused by the clustering procedure was ignored. Such noisy pseudo labels substantially hinders the model's capability on further improving feature representations on the target domain. In order to mitigate the effects of noisy pseudo labels, we propose to softly refine the pseudo labels in the target domain by proposing an unsupervised framework, Mutual Mean-Teaching (MMT), to learn better features from the target domain via off-line refined hard pseudo labels and on-line refined soft pseudo labels in an alternative training manner. In addition, the common practice is to adopt both the classification loss and the triplet loss jointly for achieving optimal performances in person re-ID models. However, conventional triplet loss cannot work with softly refined labels. To solve this problem, a novel soft softmax-triplet loss is proposed to support learning with soft pseudo triplet labels for achieving the optimal domain adaptation performance. The proposed MMT framework achieves considerable improvements of 14.4%, 18.2%, 13.1% and 16.4% mAP on Market-to-Duke, Duke-to-Market, Market-to-MSMT and Duke-to-MSMT unsupervised domain adaptation tasks.

Book ChapterDOI
23 Aug 2020
TL;DR: A multiple expert brainstorming network (MEB-Net) for domain adaptive person re-ID is proposed, opening up a promising direction about model ensemble problem under unsupervised conditions.
Abstract: Often the best performing deep neural models are ensembles of multiple base-level networks, nevertheless, ensemble learning with respect to domain adaptive person re-ID remains unexplored. In this paper, we propose a multiple expert brainstorming network (MEB-Net) for domain adaptive person re-ID, opening up a promising direction about model ensemble problem under unsupervised conditions. MEB-Net adopts a mutual learning strategy, where multiple networks with different architectures are pre-trained within a source domain as expert models equipped with specific features and knowledge, while the adaptation is then accomplished through brainstorming (mutual learning) among expert models. MEB-Net accommodates the heterogeneity of experts learned with different architectures and enhances discrimination capability of the adapted re-ID model, by introducing a regularization scheme about authority of experts. Extensive experiments on large-scale datasets (Market-1501 and DukeMTMC-reID) demonstrate the superior performance of MEB-Net over the state-of-the-arts. Code is available at https://github.com/YunpengZhai/MEB-Net.

Proceedings ArticleDOI
01 Mar 2020
TL;DR: Zhang et al. as discussed by the authors adopt adversarial learning to align distributions at the feature level, and a weighted task loss is applied to deal with unbalanced image quality in the intermediate domain.
Abstract: Recent deep learning methods for object detection rely on a large amount of bounding box annotations. Collecting these annotations is laborious and costly, yet supervised models do not generalize well when testing on images from a different distribution. Domain adaptation provides a solution by adapting existing labels to the target testing data. However, a large gap between domains could make adaptation a challenging task, which leads to unstable training processes and sub-optimal results. In this paper, we propose to bridge the domain gap with an intermediate domain and progressively solve easier adaptation subtasks. This intermediate domain is constructed by translating the source images to mimic the ones in the target domain. To tackle the domain-shift problem, we adopt adversarial learning to align distributions at the feature level. In addition, a weighted task loss is applied to deal with unbalanced image quality in the intermediate domain. Experimental results show that our method performs favorably against the state-of-the-art method in terms of the performance on the target domain.

Journal ArticleDOI
TL;DR: A comprehensive overview of existing multi-focus image fusion methods is presented and a new taxonomy is introduced to classify existing methods into four main categories: transformdomain methods, spatial domain methods, methods combining transform domain and spatial domain, and deep learning methods.

Journal ArticleDOI
TL;DR: An overview of the application of blockchain technologies for enabling traceability in the agri-food domain is provided and an extensive literature review on the integration of blockchain into traceability systems is conducted.
Abstract: Food holds a major role in human beings’ lives and in human societies in general across the planet. The food and agriculture sector is considered to be a major employer at a worldwide level. The large number and heterogeneity of the stakeholders involved from different sectors, such as farmers, distributers, retailers, consumers, etc., renders the agricultural supply chain management as one of the most complex and challenging tasks. It is the same vast complexity of the agriproducts supply chain that limits the development of global and efficient transparency and traceability solutions. The present paper provides an overview of the application of blockchain technologies for enabling traceability in the agri-food domain. Initially, the paper presents definitions, levels of adoption, tools and advantages of traceability, accompanied with a brief overview of the functionality and advantages of blockchain technology. It then conducts an extensive literature review on the integration of blockchain into traceability systems. It proceeds with discussing relevant existing commercial applications, highlighting the relevant challenges and future prospects of the application of blockchain technologies in the agri-food supply chain.

Journal ArticleDOI
TL;DR: A new fault diagnosis method is presented, which generalizes convolutional neural network (CNN) to TL scenario and gets the best performance for fault classification.
Abstract: Fault diagnosis is very important for condition based maintenance. Recently, deep learning models are introduced to learn hierarchical representations from raw data instead of using hand-crafted features, which exhibit excellent performance. The success of current deep learning lies in: 1) the training (source domain) and testing (target domain) datasets are from the same feature distribution; 2) Enough labeled data with fault information exist. However, because the machine operates under a non-stationary working condition, the trained model built on the source domain can not be directly applied on the target domain. Moreover, since no sufficient labeled or even unlabeled data are available in target domain, collecting the labeled data and building the model from scratch is time-consuming and expensive. Motivated by transfer learning (TL), we present a new fault diagnosis method, which generalizes convolutional neural network (CNN) to TL scenario. Two layers with regard to task-specific features are adapted in a layer-wise way to regularize the parameters of CNN. What's more, the domain loss is calculated by a linear combination of multiple Gaussian kernels so that the ability of adaptation is enhanced compared to single kernel. Through these two means, the distribution discrepancy is reduced and the transferable features are learned. The proposed method is validated by transfer fault diagnosis experiments. Compared to CNN without domain adaptation and shallow transfer learning methods, the proposed method gets the best performance for fault classification.

Journal ArticleDOI
03 Apr 2020
TL;DR: A novel selective pseudo-labeling strategy based on structured prediction that outperforms contemporary state-of-the-art methods and is inspired by the fact that samples in the target domain are well clustered within the deep feature space so that unsupervised clustering analysis can be used to facilitate accurate pseudo- labels.
Abstract: Unsupervised domain adaptation aims to address the problem of classifying unlabeled samples from the target domain whilst labeled samples are only available from the source domain and the data distributions are different in these two domains. As a result, classifiers trained from labeled samples in the source domain suffer from significant performance drop when directly applied to the samples from the target domain. To address this issue, different approaches have been proposed to learn domain-invariant features or domain-specific classifiers. In either case, the lack of labeled samples in the target domain can be an issue which is usually overcome by pseudo-labeling. Inaccurate pseudo-labeling, however, could result in catastrophic error accumulation during learning. In this paper, we propose a novel selective pseudo-labeling strategy based on structured prediction. The idea of structured prediction is inspired by the fact that samples in the target domain are well clustered within the deep feature space so that unsupervised clustering analysis can be used to facilitate accurate pseudo-labeling. Experimental results on four datasets (i.e. Office-Caltech, Office31, ImageCLEF-DA and Office-Home) validate our approach outperforms contemporary state-of-the-art methods.

Book ChapterDOI
Fang Zhao, Shengcai Liao, Jian Zhao, Kaihao Zhang1, Ling Shao2 
23 Aug 2020
TL;DR: A Noise Resistible Mutual-Training (NRMT) method, which maintains two networks during training to perform collaborative clustering and mutual instance selection, which outperforms the state-of-the-art UDA methods for person re-ID.
Abstract: Unsupervised domain adaptation (UDA) in the task of person re-identification (re-ID) is highly challenging due to large domain divergence and no class overlap between domains. Pseudo-label based self-training is one of the representative techniques to address UDA. However, label noise caused by unsupervised clustering is always a trouble to self-training methods. To depress noises in pseudo-labels, this paper proposes a Noise Resistible Mutual-Training (NRMT) method, which maintains two networks during training to perform collaborative clustering and mutual instance selection. On one hand, collaborative clustering eases the fitting to noisy instances by allowing the two networks to use pseudo-labels provided by each other as an additional supervision. On the other hand, mutual instance selection further selects reliable and informative instances for training according to the peer-confidence and relationship disagreement of the networks. Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art UDA methods for person re-ID.

Proceedings ArticleDOI
14 Jun 2020
TL;DR: In this paper, an exemplar-based image translation method is proposed to synthesize a photo-realistic image from the input in a distinct domain (e.g., semantic segmentation mask, or edge map, or pose keypoints) given an image exemplar image.
Abstract: We present a general framework for exemplar-based image translation, which synthesizes a photo-realistic image from the input in a distinct domain (e.g., semantic segmentation mask, or edge map, or pose keypoints), given an exemplar image. The output has the style (e.g., color, texture) in consistency with the semantically corresponding objects in the exemplar. We propose to jointly learn the cross-domain correspondence and the image translation, where both tasks facilitate each other and thus can be learned with weak supervision. The images from distinct domains are first aligned to an intermediate domain where dense correspondence is established. Then, the network synthesizes images based on the appearance of semantically corresponding patches in the exemplar. We demonstrate the effectiveness of our approach in several image translation tasks. Our method is superior to state-of-the-art methods in terms of image quality significantly, with the image style faithful to the exemplar with semantic consistency. Moreover, we show the utility of our method for several applications.