scispace - formally typeset
Search or ask a question

Showing papers on "Endosperm published in 2007"


Journal ArticleDOI
TL;DR: Starch synthase IIIa (SSIIIa)-deficient rice (Oryza sativa) mutants were generated using retrotransposon insertion and chemical mutagenesis.
Abstract: Starch synthase IIIa (SSIIIa)-deficient rice (Oryza sativa) mutants were generated using retrotransposon insertion and chemical mutagenesis. The lowest migrating SS activity bands on glycogen-containing native polyacrylamide gel, which were identified to be those for SSIIIa, were completely absent in these mutants, indicating that they are SSIIIa null mutants. The amylopectin B2 to B4 chains with degree of polymerization (DP) ≥ 30 and the Mr of amylopectin in the mutant were reduced to about 60% and 70% of the wild-type values, respectively, suggesting that SSIIIa plays an important part in the elongation of amylopectin B2 to B4 chains. Chains with DP 6 to 9 and DP 16 to 19 decreased while chains with DP 10 to 15 and DP 20 to 25 increased in the mutants amylopectin. These changes in the SSIIIa mutants are almost opposite images of those of SSI-deficient rice mutant and were caused by 1.3- to 1.7-fold increase of the amount of SSI in the mutants endosperm. Furthermore, the amylose content and the extralong chains (DP ≥ 500) of amylopectin were increased by 1.3- and 12-fold, respectively. These changes in the composition in the mutants starch were caused by 1.4- to 1.7-fold increase in amounts of granules-bound starch synthase (GBSSI). The starch granules of the mutants were smaller with round shape, and were less crystalline. Thus, deficiency in SSIIIa, the second major SS isozyme in developing rice endosperm affected the structure of amylopectin, amylase content, and physicochemical properties of starch granules in two ways: directly by the SSIIIa deficiency itself and indirectly by the enhancement of both SSI and GBSSI gene transcripts.

354 citations


Journal ArticleDOI
TL;DR: It is shown that maize lpa1 mutants are defective in a multidrug resistance-associated protein (MRP) ATP-binding cassette (ABC) transporter that is expressed most highly in embryos, but also in immature endosperm, germinating seed and vegetative tissues, and silencing expression in an embryo-specific manner produced low-phytic-acid, high-Pi transgenic maize seeds.
Abstract: Phytic acid in cereal grains and oilseeds is poorly digested by monogastric animals and negatively affects animal nutrition and the environment. However, breeding programs involving mutants with less phytic acid and more inorganic phosphate (Pi) have been frustrated by undesirable agronomic characteristics associated with the phytic acid-reducing mutations. We show that maize lpa1 mutants are defective in a multidrug resistance-associated protein (MRP) ATP-binding cassette (ABC) transporter that is expressed most highly in embryos, but also in immature endosperm, germinating seed and vegetative tissues. Silencing expression of this transporter in an embryo-specific manner produced low-phytic-acid, high-Pi transgenic maize seeds that germinate normally and do not show any significant reduction in seed dry weight. This dominant transgenic approach obviates the need for incorporating recessive lpa1 mutations to create maize hybrids with reduced phytic acid. Suppressing the homologous soybean MRP gene also generated low-phytic-acid seed, suggesting that the strategy might be feasible for many crops.

307 citations


Journal ArticleDOI
TL;DR: Hand dissection of mature grains from two common wheats was performed to quantitatively assess their tissue composition and to obtain homogeneous samples of embryonic axis, scutellum, starchy endosperm, aleurone layer, hyaline layer, outer pericarp and a composite layer made up of testa+hyaline layer+innerPericarp.

280 citations


Journal ArticleDOI
TL;DR: The convergent selection of parental epigenetic imbalance involving H3 variants in sexually reproducing organisms is proposed, which would mark the first zygotic divisions in animal species.

242 citations


Journal ArticleDOI
TL;DR: A remarkable compartmentalization of enzymes involved in methionine biosynthesis between the seed tissues was revealed that may regulate the availability of sulfur-containing amino acids for embryo protein synthesis during seed filling, which is relevant to strategies for modifying the nutritional value of legume seeds.

225 citations


Journal ArticleDOI
TL;DR: This paper found that bran contained much more yellow and red pigments than endosperm, and that the levels of red pigment decreased from the surface of the brown rice to the middle end-osperm.

210 citations


Journal ArticleDOI
TL;DR: A spatiotemporal complex model of OsAGP SSU and LSU isoforms in leaves and in developing endosperm of rice plants is proposed.
Abstract: ADP-glucose pyrophosphorylase (AGP) catalyzes the first committed step of starch biosynthesis in higher plants. To identify AGP isoforms essential for this biosynthetic process in sink and source tissues of rice plants, we analyzed the rice AGP gene family which consists of two genes, OsAGPS1 and OsAGPS2, encoding small subunits (SSU) and four genes, OsAGPL1, OsAGPL2, OsAGPL3 and OsAGPL4, encoding large subunits (LSU) of this enzyme heterotetrameric complex. Subcellular localization studies using green fluorescent protein (GFP) fusion constructs indicate that OsAGPS2a, the product of the leaf-preferential transcript of OsAGPS2, and OsAGPS1, OsAGPL1, OsAGPL3, and OsAGPL4 are plastid-targeted isoforms. In contrast, two isoforms, SSU OsAGPS2b which is a product of a seed-specific transcript of OsAGPS2, and LSU OsAGPL2, are localized in the cytosol. Analysis of osagps2 and osagpl2 mutants revealed that a lesion of one of the two cytosolic isoforms, OsAGPL2 and OsAGPS2b, causes a shrunken endosperm due to a remarkable reduction in starch synthesis. In leaves, however, only the osagps2 mutant appears to severely reduce the transitory starch content. Interestingly, the osagps2 mutant was indistinguishable from wild type during vegetative plant growth. Western blot analysis of the osagp mutants and wild type plants demonstrated that OsAGPS2a is an SSU isoform mainly present in leaves, and that OsAGPS2b and OsAGPL2 are the major SSU and LSU isoforms, respectively, in the endosperm. Finally, we propose a spatiotemporal complex model of OsAGP SSU and LSU isoforms in leaves and in developing endosperm of rice plants.

180 citations


Journal ArticleDOI
TL;DR: This work is the first report of mapping Psy genes and supports the role of Psy1-1 in elevated levels of endosperm colour in durum wheat, and is a target for the further development of a molecular marker to enhance selection for endos Peruvian wheat breeding programs.
Abstract: The yellow colour of durum wheat (Triticum turgidum L. var durum) semolina is due in part to the presence of carotenoid pigments found in the endosperm and is an important end-use quality trait. We hypothesized that variation in the genes coding for phytoene synthase (Psy), a critical enzyme in carotenoid biosynthesis, may partially explain the phenotypic variation in endosperm colour observed among durum cultivars. Using rice sequence information, primers were designed to PCR clone and sequence the Psy genes from Kofa (high colour) and W9262-260D3 (medium colour) durum cultivars. Sequencing confirmed the presence of four Psy genes in each parent, corresponding to a two member gene family designated as Psy1-1, Psy1-2 and Psy2-1 and Psy2-2. A genetic map was constructed using 155 F1-derived doubled haploid lines from the cross W9262-260D3/Kofa with 194 simple sequence repeat and DArT® markers. Using Psy1-1 and Psy2-1 allele-specific markers and chromosome mapping, the Psy1 and Psy2 genes were located to the group 7 and 5 chromosomes, respectively. Four quantitative trait loci (QTL) underlying phenotypic variation in endosperm colour were identified on chromosomes 2A, 4B, 6B, and 7B. The Psy1-1 locus co-segregated with the 7B QTL, demonstrating an association of this gene with phenotypic variation for endosperm colour. This work is the first report of mapping Psy genes and supports the role of Psy1-1 in elevated levels of endosperm colour in durum wheat. This gene is a target for the further development of a molecular marker to enhance selection for endosperm colour in durum wheat breeding programs.

174 citations


Journal ArticleDOI
TL;DR: A distinct role for OsSSIIIa/Flo5 and the coordinated action of other SS isoforms during starch synthesis in the seed endosperm of rice is proposed.
Abstract: To elucidate the role of SSIIIa during starch synthesis in rice (Oryza sativa L.) endosperm, we characterized null mutants of this gene, generated by T-DNA insertions. Scanning electron microscope (SEM) analysis revealed that the starch granules in these mutants are smaller and rounder compared with the wild type controls, and that the mutant endosperm is characterized by a loosely packed central portion exhibiting a floury-like phenotype. Hence, the OsSSIIIa (Oryza sativa SSIIIa) mutations are referred to as white-core floury endosperm 5-1 (flo5-1) and flo5-2. Based upon their X-ray diffraction patterns, the crystallinity of the starch in the flo5 mutant endosperm is decreased compared with wild type. Through determination of the chain-length distribution of the mutant endosperm starch, we found that flo5-1 and flo5-2 mutants have reduced the content of long chains with degree of polymerization (DP) 30 or greater compared with the controls. This suggests that OsSSIIIa/Flo5 plays an important role in generating relatively long chains in rice endosperm. In addition, DP 6 to 8 and DP 16 to 20 appeared to be reduced in endosperm starch of flo5-1 and flo5-2, whereas DP 9 to 15 and DP 22 to 29 were increased in these mutants. By the use of differential scanning calorimetry (DSC), the gelatinization temperatures of endosperm starch were found to be 1-5 degrees C lower than those of the control. We propose a distinct role for OsSSIIIa/Flo5 and the coordinated action of other SS isoforms during starch synthesis in the seed endosperm of rice.

163 citations


Journal ArticleDOI
TL;DR: The specific late-stage accumulation of the pyruvate orthophosphate dikinase may suggest a critical role of this enzyme in the starch-protein balance through inorganic pyrophosphate-dependent restriction of ADP-glucose synthesis in addition to its usually reported influence on the alanine-aromatic amino acid synthesis balance.
Abstract: Although the morphological steps of maize (Zea mays) endosperm development are well described, very little is known concerning the coordinated accumulation of the numerous proteins involved. Here, we present a proteomic study of maize endosperm development. The accumulation pattern of 409 proteins at seven developmental stages was examined. Hierarchical clustering analysis allowed four main developmental profiles to be recognized. Comprehensive investigation of the functions associated with clusters resulted in a consistent picture of the developmental coordination of cellular processes. Early stages, devoted to cellularization, cell division, and cell wall deposition, corresponded to maximal expression of actin, tubulins, and cell organization proteins, of respiration metabolism (glycolysis and tricarboxylic acid cycle), and of protection against reactive oxygen species. An important protein turnover, which is likely associated with the switch from growth and differentiation to storage, was also suggested from the high amount of proteases. A relative increase of abundance of the glycolytic enzymes compared to tricarboxylic acid enzymes is consistent with the recent demonstration of anoxic conditions during starch accumulation in the endosperm. The specific late-stage accumulation of the pyruvate orthophosphate dikinase may suggest a critical role of this enzyme in the starch-protein balance through inorganic pyrophosphate-dependent restriction of ADP-glucose synthesis in addition to its usually reported influence on the alanine-aromatic amino acid synthesis balance.

158 citations


Journal ArticleDOI
TL;DR: Results indicated that the carob germ meal composition could be affected by the isolation procedures, and the abundant protein fraction bands detected by SDS polyacrylamide gel electrophoresis showed that theCarob germ protein fraction was extremely heterogeneous.

Journal ArticleDOI
TL;DR: By suppressing lysine catabolism, transgenic maize kernels accumulated a significant amount of lysin, and the practical use of RNAi for plant genetic engineering to specifically target gene suppression in desired tissues without eliciting systemic spreading and the transitive nature of plant RNAi silencing is supported.
Abstract: Because of the limited lysine content in corn grain, synthetic lysine supplements are added to corn meal-based rations for animal feed. The development of biotechnology, combined with the understanding of plant lysine metabolism, provides an alternative solution for increasing corn lysine content through genetic engineering. Here, we report that by suppressing lysine catabolism, transgenic maize kernels accumulated a significant amount of lysine. This was achieved by RNA interference (RNAi) through the endosperm-specific expression of an inverted-repeat (IR) sequence targeting the maize bifunctional lysine degradation enzyme, lysine-ketoglutarate reductase/saccharopine dehydrogenase (ZLKR/SDH). Although plant-short interfering RNA (siRNA) were reported to lack tissue specificity due to systemic spreading, we confirmed that the suppression of ZLKR/SDH in developing transgenic kernels was restricted to endosperm tissue. Furthermore, results from our cloning and sequencing of siRNA suggested the absence of transitive RNAi. These results support the practical use of RNAi for plant genetic engineering to specifically target gene suppression in desired tissues without eliciting systemic spreading and the transitive nature of plant RNAi silencing.

Journal ArticleDOI
Y. Yu1, Jun Wang1
TL;DR: The effect of gamma irradiation on the structural and physicochemical properties of rice starch and contrast with that of non-irradiated and traditional air-dried rice was studied in this article.

Journal ArticleDOI
03 May 2007-Planta
TL;DR: The overall number of seeds and the number of normally developed seed is reduced by ∼50% in siliques of the Ataap8 T-DNA insertion mutant and this result could be reproduced in plants where expression of AtAAP8 is targeted with an RNAi approach.
Abstract: The development of seeds depends on the import of carbohydrates and amino acids supplied by the maternal tissue via the phloem. Several amino acid transporters have been reported to be expressed during seed and silique development in Arabidopsis thaliana (L.) Heynh. Here we show that mutants lacking the high affinity amino acid permease 8 (At1g10010) display a severe seed phenotype. The overall number of seeds and the number of normally developed seed is reduced by approximately 50% in siliques of the Ataap8 T-DNA insertion mutant. This result could be reproduced in plants where expression of AtAAP8 is targeted with an RNAi approach. The seed phenotype is correlated with a specifically altered amino acid composition of young siliques. Aspartic acid and glutamic acid are significantly reduced in young siliques of the mutants. In correlation with the fact that AAP8 is a high affinity transporter for acidic amino acids, translocation of (14)C-labelled aspartate fed via the root system to seeds of the mutants is reduced. AAP8 plays a crucial role for the uptake of amino acids into the endosperm and supplying the developing embryo with amino acids during early embryogenesis.

Journal ArticleDOI
TL;DR: A model for aleur one cell fate specification is suggested in which DEK1 perceives and/or transmits a positional signal, CR4 promotes the lateral movement of aleurone signaling molecules between aleurOne cells, and SAL1 maintains the proper plasma membrane concentration of DEK 1 and CR4 proteins via endosome-mediated recycling/degradation.
Abstract: DEFECTIVE KERNEL1 (DEK1), which consists of a membrane-spanning region (DEK1-MEM) and a calpain-like Cys proteinase region (DEK1-CALP), is essential for aleurone cell formation at the surface of maize (Zea mays) endosperm. Immunolocalization and FM4-64 dye incubation experiments showed that DEK1 and CRINKLY4 (CR4), a receptor kinase implicated in aleurone cell fate specification, colocalized to plasma membrane and endosomes. SUPERNUMERARY ALEURONE LAYER1 (SAL1), a negative regulator of aleurone cell fate encoding a class E vacuolar sorting protein, colocalized with DEK1 and CR4 in endosomes. Immunogold localization, dual-axis electron tomography, and diffusion of fluorescent dye tracers showed that young aleurone cells established symplastic subdomains through plasmodesmata of larger dimensions than those connecting starchy endosperm cells and that CR4 preferentially associated with plasmodesmata between aleurone cells. Genetic complementation experiments showed that DEK1-CALP failed to restore wild-type phenotypes in maize and Arabidopsis thaliana dek1 mutants, and DEK1-MEM also failed to restore wild-type phenotypes in Arabidopsis dek1-1 mutants. Instead, ectopic expression of DEK1-MEM under the control of the cauliflower mosaic virus 35S promoter gave a dominant negative phenotype. These data suggest a model for aleurone cell fate specification in which DEK1 perceives and/or transmits a positional signal, CR4 promotes the lateral movement of aleurone signaling molecules between aleurone cells, and SAL1 maintains the proper plasma membrane concentration of DEK1 and CR4 proteins via endosome-mediated recycling/degradation.

Journal ArticleDOI
TL;DR: In this article, Mez1, Mez2 and Mez3 were found to have a bi-allelic expression pattern in both the endosperm and embryonic tissue.
Abstract: Imprinted gene expression refers to differential transcription of alleles depending on their parental origin. To date, most examples of imprinted gene expression in plants occur in the triploid endosperm tissue. The Arabidopsis gene MEDEA displays an imprinted pattern of gene expression and has homology to the Drosophila Polycomb group (PcG) protein Enhancer-of-zeste (E(z)). We have tested the allele-specific expression patterns of the three maize E(z)-like genes Mez1, Mez2 and Mez3. The expression of Mez2 and Mez3 is not imprinted, with a bi-allelic pattern of transcription for both genes in both the endosperm and embryonic tissue. In contrast, Mez1 displays a bi-allelic expression pattern in the embryonic tissue, and a mono-allelic expression pattern in the developing endosperm tissue. We demonstrate that mono-allelic expression of the maternal Mez1 allele occurs throughout endosperm development. We have identified a 556 bp differentially methylated region (DMR) located approximately 700 bp 5' of the Mez1 transcription start site. This region is heavily methylated at CpG and CpNpG nucleotides on the non-expressed paternal allele but has low levels of methylation on the expressed maternal allele. Molecular evolutionary analysis indicates that conserved domains of all three Mez genes are under purifying selection. The common imprinted expression of Mez1 and MEDEA, in concert with their likely evolutionary origins, suggests that there may be a requirement for imprinting of at least one E(z)-like gene in angiosperms.

Journal ArticleDOI
TL;DR: It was demonstrated by confocal and electron microscopy analysis that the 7Crp peptide was mainly localized in the endoplasmic reticulum-derived protein bodies, designated protein body I (PB-I).
Abstract: Transgenic rice plants expressing 7Crp peptide were generated by Agrobacterium-mediated transformation. The 7Crp peptide is the hybrid peptide of seven major human T-cell epitopes derived from Japanese cedar pollen allergens Cry j 1 and Cry j 2. When the 7Crp gene was expressed under the control of the rice AGPase large subunit or maize ubiquitin-1 promoters, it could only be detected in the endosperm of rice seed, although high levels of RNA transcript were observed in the leaf, stem, and seed embryo. It was demonstrated by confocal and electron microscopy analysis that the 7Crp peptide was mainly localized in the endoplasmic reticulum-derived protein bodies, designated protein body I (PB-I). Our results indicate that rice endosperm tissue has advantage over other tissues as a production platform for foreign recombinant proteins.

Journal ArticleDOI
TL;DR: In this paper, endosperm starch and pericarp starch were isolated from maize kernels at different developmental stages, and a substantial increase in granule size was observed from 14DAP (diameter 4-7μm) to 30DAP(diameter 10-23μm).

Journal ArticleDOI
17 May 2007-Nature
TL;DR: It is demonstrated that imprinting in developing seeds can be bypassed and viable albeit smaller seedlings can develop from seeds lacking a paternal contribution to the endosperm, supporting the hypothesis that only with the evolution of double fertilization did the action of the FIS genes become a requirement for seed development.
Abstract: One factor in the success of the flowering plants (angiosperms) may be the development of the embryo along with a second fertilization product, the endosperm. Two rival explanations for the evolutionary origin of the endosperm were proposed over a century ago, and have since divided the field of plant development. Nowack et al. present new evidence that favours one of the hypotheses, that of eminent botanist Eduard Strasburger. Seeds from an Arabidopsis mutant containing a maternally derived diploid endosperm, instead of a biparental triploid endosperm, are found able to develop into viable plants. This argues for female reproductive structures as the source for the endosperm, and against a requirement for genomic imprinting, where an allele is expressed dependent on which parent contributes it. Contributions from both parents are usually needed to produce viable offspring, in plants as well as animals. Nowack et al. explore the pathways controlling this process in plants by producing seeds containing only maternal endosperm— only possible when certain FIS class mutations are present in the maternal line — that grow into viable but smaller plants. In developing progeny of mammals the two parental genomes are differentially expressed according to imprinting marks, and embryos with only a uniparental genetic contribution die1,2,3. Gene expression that is dependent on the parent of origin has also been observed in the offspring of flowering plants, and mutations in the imprinting machinery lead to embryonic lethality, primarily affecting the development of the endosperm—a structure in the seed that nourishes the embryo, analogous to the function of the mammalian placenta4. Here we have generated Arabidopsis thaliana seeds in which the endosperm is of uniparental, that is, maternal, origin. We demonstrate that imprinting in developing seeds can be bypassed and viable albeit smaller seedlings can develop from seeds lacking a paternal contribution to the endosperm. Bypassing is only possible if the mother is mutant for any of the FIS-class genes, which encode Polycomb group chromatin-modifying factors. Thus, these data provide functional evidence that the action of the FIS complex balances the contribution of the paternal genome. As flowering plants have evolved a special reproduction system with a parallel fusion of two female with two male gametes, our findings support the hypothesis that only with the evolution of double fertilization did the action of the FIS genes become a requirement for seed development. Furthermore, our data argue for a gametophytic origin of endosperm in flowering plants, thereby supporting a hypothesis raised in 1900 by Eduard Strasburger.

Journal ArticleDOI
TL;DR: Observations suggest that GGT1 is important in preventing oxidative stress by metabolizing extracellular GSSG, while GGT2 might be important in transporting glutathione into developing seeds.
Abstract: γ-Glutamyl transpeptidase (GGT) is the only enzyme known that can cleave the γ-peptide bond between glutamate and cysteine in glutathione, and is therefore a key step in glutathione degradation. There are three functional GGT genes in Arabidopsis, two of which are considered here. GGT1 and GGT2 are apoplastic, associated with the plasma membrane and/or cell wall. RNA blots and analysis of enzyme activity in knockout mutants suggest that GGT1 is expressed most strongly in leaves but is found throughout the plant. A GGT1::GUS fusion construct showed expression only in vascular tissue, specifically the phloem of the mid-rib and minor veins of leaves, roots and flowers. This localization was confirmed in leaves by laser microdissection. GGT2 expression is limited to embryo, endosperm, outer integument, and a small portion of the funiculus in developing siliques. The ggt2 mutants had no detectable phenotype, while the ggt1 knockouts were smaller and flowered sooner than wild-type. In ggt1 plants, the cotyledons and older leaves yellowed early, and GSSG, the oxidized form of glutathione, accumulated in the apoplastic space. These observations suggest that GGT1 is important in preventing oxidative stress by metabolizing extracellular GSSG, while GGT2 might be important in transporting glutathione into developing seeds.

Journal ArticleDOI
TL;DR: Oat (Avena sativa) is unusual in comparison with other cereals since there are varieties with up to 18% oil content, but microscopy studies revealed that whereas oil bodies of the embryo and scutellum still contained a discrete shape upon grain maturation, oil bodiesof the endosperms fused upon maturation and formed smears of oil.
Abstract: Oat (Avena sativa) is unusual in comparison with other cereals since there are varieties with up to 18% oil content. The lipid content and fatty acid composition in different parts of the grain during seed development were characterized in cultivars Freja (6% oil) and Matilda (10% oil), using thin-layer and gas chromatography, and light and electron microscopy. The majority of lipids (86–90%) were found in the endosperm. Ninety-five per cent of the higher oil content of cv. Matilda compared with cv. Freja was due to increased oil content of the endosperm. Up to 84% of the lipids were deposited during the first half of seed development, when seeds where still green with a milky endosperm. Microscopy studies revealed that whereas oil bodies of the embryo and scutellum still contained a discrete shape upon grain maturation, oil bodies of the endosperms fused upon maturation and formed smears of oil.

Journal ArticleDOI
TL;DR: The results indicate that the developing endosperm is sufficient to enhance cell proliferation and differentiation in the seed coat and suggest that coordinated development of the seed components relies on interactions before fertilization between the female gametophyte and the surrounding maternal ovule integuments.
Abstract: Double fertilization of the female gametophyte produces the endosperm and the embryo enclosed in the maternal seed coat. Proper seed communication necessitates exchanges of signals between the zygotic and maternal components of the seed. However, the nature of these interactions remains largely unknown. We show that double fertilization of the Arabidopsis thaliana female gametophyte rapidly triggers sustained cell proliferation in the seed coat. Cell proliferation and differentiation of the seed coat occur in autonomous seeds produced in the absence of fertilization of the multicopy suppressor of ira1 (msi1) mutant. As msi1 autonomous seeds mostly contain autonomous endosperm, our results indicate that the developing endosperm is sufficient to enhance cell proliferation and differentiation in the seed coat. We analyze the effect of autonomous proliferation in the retinoblastoma-related1 (rbr1) female gametophyte on seed coat development. In contrast with msi1, supernumerary nuclei inrbr1 female gametophytes originate mainly from the endosperm precursor lineage but do not express an endosperm fate marker. In addition, defects of the rbr1 female gametophyte also reduce cell proliferation in the ovule integuments before fertilization and prevent further differentiation of the seed coat. Our data suggest that coordinated development of the seed components relies on interactions before fertilization between the female gametophyte and the surrounding maternal ovule integuments and after fertilization between the endosperm and the seed coat.

Journal ArticleDOI
TL;DR: The importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat are illustrated.
Abstract: Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.

Journal ArticleDOI
15 Feb 2007-Planta
TL;DR: It is demonstrated that stimulation of biochemical events in both source and sink tissues is associated with Sh2r6hs expression, and increased photosynthetic rates relatively early in seed development appear to be key to the Sh2R6hs enhanced yield phenotype.
Abstract: ADP-glucose pyrophosphorylase (AGP) is the rate-limiting step in seed starch biosynthesis. Expression of an altered maize AGP large subunit (Sh2r6hs) in wheat (Triticum aestivum L.) results in increased AGP activity in developing seed endosperm and seed yield. The yield phenotype involves increases in both seed number and total plant biomass. Here we describe stimulation of photosynthesis by the seed-specific Sh2r6hs transgene. Photosynthetic rates were increased in Sh2r6hs-expressing plants under high light but not low light growth conditions, peaking at roughly 7 days after flowering (DAF). In addition, there were significant increases in levels of fructose, glucose, and sucrose in flag leaves at both 7 and 14 DAF. In seeds, levels of carbon metabolites at 7 and 14 DAF were relatively unchanged but increases in glucose, ADP-glucose, and UDP-glucose were observed in seeds from Sh2r6hs positive plants at maturity. Increased photosynthetic rates relatively early in seed development appear to be key to the Sh2r6hs enhanced yield phenotype as no yield increase or photosynthetic rate changes were found when plants were grown in a suboptimal light environment. These findings demonstrate that stimulation of biochemical events in both source and sink tissues is associated with Sh2r6hs expression.

Journal ArticleDOI
TL;DR: An overview of current models of starch breakdown in leaves is provided and it is now apparent that glucan phosphorylation is required for normal rates of starch mobilisation to occur, although a detailed understanding of this step is still lacking.
Abstract: The aim of this article is to provide an overview of current models of starch breakdown in leaves. We summarise the results of our recent work focusing on Arabidopsis, relating them to other work in the field. Early biochemical studies of starch containing tissues identified numerous enzymes capable of participating in starch degradation. In the non-living endosperms of germinated cereal seeds, starch breakdown proceeds by the combined actions of α-amylase, limit dextrinase (debranching enzyme), β-amylase and α-glucosidase. The activities of these enzymes and the regulation of some of the respective genes on germination have been extensively studied. In living plant cells, additional enzymes are present, such as α-glucan phosphorylase and disproportionating enzyme, and the major pathway of starch breakdown appears to differ from that in the cereal endosperm in some important aspects. For example, reverse-genetic studies of Arabidopsis show that α-amylase and limit-dextrinase play minor roles and are dispensable for starch breakdown in leaves. Current data also casts doubt on the involvement of α-glucosidase. In contrast, several lines of evidence point towards a major role for β-amylase in leaves, which functions together with disproportionating enzyme and isoamylase (debranching enzyme) to produce maltose and glucose. Furthermore, the characterisation of Arabidopsis mutants with elevated leaf starch has contributed to the discovery of previously unknown proteins and metabolic steps in the pathway. In particular, it is now apparent that glucan phosphorylation is required for normal rates of starch mobilisation to occur, although a detailed understanding of this step is still lacking. We use this review to give a background to some of the classical genetic mutants that have contributed to our current knowledge.

Journal ArticleDOI
TL;DR: The analysis of endosperm with altered parental genome dosage indicated that the additional heterochromatin may be predominantly of maternal origin, suggesting differential regulation of maternal and paternal genomes, possibly linked to genome dosage regulation.
Abstract: The endosperm is a seed tissue unique to flowering plants. Due to its central role in nourishing and protecting the embryo, endosperm development is subject to parental conflicts and adaptive processes, which led to the evolution of parent-of-origin–dependent gene regulation. The role of higher-order chromatin organization in regulating the endosperm genome was long ignored due to technical hindrance. We developed a combination of approaches to analyze nuclear structure and chromatin organization in Arabidopsis thaliana endosperm. Endosperm nuclei showed a less condensed chromatin than other types of nuclei and a peculiar heterochromatin organization, with smaller chromocenters and additional heterochromatic foci interspersed in euchromatin. This is accompanied by a redistribution of the heterochromatin mark H3K9me1 from chromocenters toward euchromatin and interspersed heterochromatin. Thus, endosperm nuclei have a specific nuclear architecture and organization, which we interpret as a relaxed chromocenter-loop model. The analysis of endosperm with altered parental genome dosage indicated that the additional heterochromatin may be predominantly of maternal origin, suggesting differential regulation of maternal and paternal genomes, possibly linked to genome dosage regulation.

Journal ArticleDOI
TL;DR: Interestingly, it is revealed that the transport activity of ZmBT1 is reversibly regulated by redox reagents such as diamide and dithiothreitol, indicating different physiological roles for both maize BT1 isoforms.

01 Jan 2007
TL;DR: In this article, two new high sugar types of commercial sweet corn, synergistic and augmented sweet varieties have been developed and released by U.S. seed companies, and the details of breeding methods using a combination of endosperm genes for sweetness improvement are disclosed.
Abstract: Sweetness, a creamy texture and aroma, along with desirable kernel color, good germination, and high yield, are the important traits for sweet corn. Various recessive mutants in corn expressed in the endosperm e.g. sugary1 (su1), sugary enhancer (se), shrunken2 (sh2), brittle1 (bt) etc., which improve quality traits such as sweetness, flavor and nutritive value have been used either singly or in combination for developing new commercial hybrids. In single mutant varieties, at harvest (20 days after pollination), the sugar (sucrose) concentration in su1 and sh2 sweet corn is 3 and 8 times higher than wild type, respectively. For se-type when in combination with su1 the sucrose level is as high as that in sh2. After harvest, the sugar in kernels of su1 and se types is rapidly converted to starch, but this conversion occurs more slowly in sh2 type. However, both su1 and se sweet corn have more phytoglycogen or creamy texture, than sh2 variety without difficulties in germination. The details of breeding methods using a combination of endosperm genes for sweetness improvement are disclosed in the U.S. Patents Nos. 3,971,161 and 4,630,393. To date, two new high sugar types of commercial sweet corn, synergistic and augmented sweet varieties have been developed and released by U.S. seed companies. Synergistic has a combination of su1, se, and sh2 kernels on each ear. It carries the seed quality and vigor of su1 varieties, the enhanced sweet corn flavor of se and harvest-ability and shelf life approaching supersweet (sh2) type. Augmented sweet varieties, sh2 type, carry se modifier genes for tenderness and sweetness and the sh2 gene for high sugars and long shelf life.

Journal ArticleDOI
TL;DR: The dwarf category has been removed and the micro category replaced by ‘undifferentiated’ to reflect the state of the embryo in fresh seeds and the key now includes linear fully developed, linear underdeveloped, spatulate fully developed and spatulate underdeveloped seed types, which Martin illustrated but did not include in his key.
Abstract: Martin's (1946) seed classification system has 10 types based on embryo and endosperm characteristics and two additional types based on seed size: dwarf (0.3–2.0 mm) and micro ( ≤ 0.2 mm). He listed 17 families and 12 genera (in five other families) as having dwarf seeds. Our recent discovery of morphophysiological dormancy in dwarf seeds of several taxa of Campanulaceae and one of Gentianaceae prompted an evaluation of dwarf seeds. Martin's paper contains 37 families with one to several small (0.3–2.0 mm) seeded species that he did not list as being dwarf. Comparison of Martin's dwarf families and the 37 small-seeded non-dwarf families revealed no consistent differences between the two groups in endosperm texture, seed-coat anatomy, embryo morphology, class of seed dormancy or phylogenetic position. Also, Martin's dwarf seeds include a variety of embryo morphologies. Consequently, we have revised Martin's key to seed types. The dwarf category has been removed and the micro category replaced by ‘undifferentiated’ to reflect the state of the embryo in fresh seeds. Further, the key now includes linear fully developed, linear underdeveloped, spatulate fully developed and spatulate underdeveloped seed types, which Martin illustrated but did not include in his key. In the revised key, all seeds are distinguished on the basis of embryo and endosperm characteristics.

Journal ArticleDOI
TL;DR: It is found that Fie1 is neither expressed in the sperm, egg cell nor central cell before fertilization, and the methylated inactive state is the default status of FIE1 in most tissues, demonstrating that the regulation of Fie 1 imprinting in maize is different from Arabidopsis and that Fies1 is likely to have acquired important novel functions for endosperm development.
Abstract: Imprinting refers to the epigenetic regulation of gene expression that is dependent upon gene inheritance from the maternal or paternal parent. Previously, we have identified two maize homologs of the single Arabidopsis Polycomb Group gene FIE. Here, we report on the expression pattern of these genes in individual gametes before and after fertilization, and on the role of DNA methylation in determining the maternal expression of the Fie1 gene. We found that Fie1 is neither expressed in the sperm, egg cell nor central cell before fertilization. Activation of the Fie1 maternal allele occurs around two days after pollination (DAP) in the primary endosperm and peaks at 10-11 DAP coinciding with endosperm transition from mitotic division to endoreduplication. In contrast, Fie2 is expressed in the egg cell and more intensively in the central cell similar to Arabidopsis FIE, which strongly supports the hypothesis that it functions as a repressor of endosperm development before fertilization. Using MSRE-PCR and bisulfite sequencing, we could show that the methylated inactive state is the default status of Fie1 in most tissues. In the endosperm the paternal Fie1 allele remains methylated and silent, but the maternal allele appears hypomethylated and active, explaining mono-allelic expression of Fie1 in the endosperm. Taking together, these data demonstrate that the regulation of Fie1 imprinting in maize is different from Arabidopsis and that Fie1 is likely to have acquired important novel functions for endosperm development.