scispace - formally typeset
Search or ask a question

Showing papers on "Flow separation published in 2010"


Journal ArticleDOI
TL;DR: N nano, micro, and hierarchical structures found in lotus plant surfaces, as well as shark skin replica and a rib patterned surface to simulate shark skin structure were fabricated to study drag reduction efficiency studies on the surfaces.
Abstract: Biomimetics allows one to mimic nature to develop materials and devices of commercial interest for engineers. Drag reduction in fluid flow is one of the examples found in nature. In this study, nano, micro, and hierarchical structures found in lotus plant surfaces, as well as shark skin replica and a rib patterned surface to simulate shark skin structure were fabricated. Drag reduction efficiency studies on the surfaces were systematically carried out using water flow. An experimental flow channel was used to measure the pressure drop in laminar and turbulent flows, and the trends were explained in terms of the measured and predicted values by using fluid dynamics models. The slip length for various surfaces in laminar flow was also investigated based on the measured pressure drop. For comparison, the pressure drop for various surfaces was also measured using air flow.

257 citations


Journal ArticleDOI
TL;DR: In this article, a large-eddy simulation of an underexpanded sonic jet injection into supersonic crossflows is performed to obtain insights into key physics of the jet mixing.
Abstract: Large-eddy simulation of an underexpanded sonic jet injection into supersonic crossflows is performed to obtain insights into key physics of the jet mixing. A high-order compact differencing scheme with a recently developed localized artificial diffusivity scheme for discontinuity-capturing is used. Progressive mesh refinement study is conducted to quantify the broadband range of scales of turbulence that are resolved in the simulations. The simulations aim to reproduce the flow conditions reported in the experiments of Santiago and Dutton [Santiago, J. G., and Dutton, J. C., "Velocity Measurements of a Jet Injected into a Supersonic Crossflow," Journal of Propulsion and Power, Vol.132,1997, pp. 264―273] and elucidate the physics of the jet mixing. A detailed comparison with these data is shown. Statistics obtained by the large-eddy simulation with turbulent crossflow show good agreement with the experiment, and a series of mesh refinement studies shows reasonable grid convergence in the predicted mean and turbulent flow quantities. The present large-eddy simulation reproduces the large-scale dynamics of the flow and jet fluid entrainment into the boundary-layer separation regions upstream and downstream of the jet injection reported in previous experiments, but the richness of data provided by the large-eddy simulation allows a much deeper exploration of the flow physics. Key physics of the jet mixing in supersonic crossflows are highlighted by exploring the underlying unsteady phenomena. The effect of the approaching turbulent boundary layer on the jet mixing is investigated by comparing the results of jet injection into supersonic crossflows with turbulent and laminar crossflows.

218 citations


Journal ArticleDOI
TL;DR: In this article, the effects of surface roughness on gas turbine performance are reviewed based on publications in the open literature over the past 60 years, and the conclusion remains that considerable research is yet necessary to fully understand the role of roughness in gas turbines.
Abstract: The effects of surface roughness on gas turbine performance are reviewed based on publications in the open literature over the past 60 years. Empirical roughness correlations routinely employed for drag and heat transfer estimates are summarized and found wanting. No single correlation appears to capture all of the relevant physics for both engineered and service-related (e.g., wear or environmentally induced) roughness. Roughness influences engine performance by causing earlier boundary layer transition, increased boundary layer momentum loss (i.e., thickness), and/or flow separation. Roughness effects in the compressor and turbine are dependent on Reynolds number, roughness size, and to a lesser extent Mach number. At low Re, roughness can eliminate laminar separation bubbles (thus reducing loss) while at high Re (when the boundary layer is already turbulent), roughness can thicken the boundary layer to the point of separation (thus increasing loss). In the turbine, roughness has the added effect of augmenting convective heat transfer. While this is desirable in an internal turbine coolant channel, it is clearly undesirable on the external turbine surface. Recent advances in roughness modeling for computational fluid dynamics are also reviewed. The conclusion remains that considerable research is yet necessary to fully understand the role of roughness in gas turbines.

214 citations


Journal ArticleDOI
TL;DR: In this paper, a parametric study has been carried out to elucidate the characteristics of flow past a square cylinder inclined with respect to the main flow in the laminar flow regime.
Abstract: A parametric study has been carried out to elucidate the characteristics of flow past a square cylinder inclined with respect to the main flow in the laminar flow regime. Reynolds number and angle of incidence are the key parameters which determine the flow characteristics. Location of separation point is greatly affected by angle of incidence, thus determining the flow field around the square cylinder. The critical Reynolds number for periodic vortex shedding at each angle of incidence considered is obtained by using Stuart–Landau equation. Attempt is made to classify the related flow patterns from a topological point of view, resulting in three distinct patterns in total. A comprehensive analysis of the effects of Reynolds number and angle of incidence on flow-induced forces on the square cylinder is presented. Collecting all the results obtained, contour diagrams of force and moment coefficients, Strouhal number, rms of lift-coefficient fluctuation, as well as a flow-pattern diagram are proposed for the ranges of the two parameters considered in the current investigation. Finally, a Floquet stability analysis is presented to detect the onset of the secondary instability leading to three-dimensional flow. The proposed diagrams and the Floquet stability analysis shed light on better physical understanding of the flow past a square cylinder, which should be useful in many engineering applications.

196 citations


Journal ArticleDOI
TL;DR: In this article, the flowfield downstream of a strut-based injection system in a supersonic combustion ramjet is investigated using large-eddy simulation with a new localized dynamic subgrid closure for compressible turbulent mixing.
Abstract: The flowfield downstream of a strut-based injection system in a supersonic combustion ramjet is investigated using large-eddy simulation with a new localized dynamic subgrid closure for compressible turbulent mixing. Recirculations are formed at the base of the strut in the nonreacting flow and trap some of the injected fluid. The high levels of turbulence along the underexpanded hydrogen jets and in the shear layer lead to a high level of mixing of fuel and freestream fluids. Furthermore, the shear layer unsteadiness permits efficient large-scale mixing of freestream and injected fluids. In the reacting flowfield, the flame anchoring mechanism is, however, found to depend more on a recirculation region located downstream of the injectors than on their sides. A region of reverse flow is formed that traps hot products and radicals. Intermittent convection of hot fluid toward the injector occurs and preheats the reactants.

195 citations


Journal ArticleDOI
TL;DR: A review of recent advances in the study of high Reynolds number turbulent boundary layers is given in this article, where the emergent regime of very large-scale structures in the logarithmic region and their subsequent influence on the near-wall cycle challenges many of the previously held assumptions regarding scaling of turbulent boundary layer at high Reynolds numbers.

167 citations


Journal ArticleDOI
TL;DR: In this article, the effect of the interaction strength on the unsteady behavior of a planar shock wave impinging on a low Reynolds turbulent boundary layer is investigated by means of a variation in incident shock angle under otherwise constant flow conditions.
Abstract: The effect of the interaction strength on the unsteady behavior of a planar shock wave impinging on a low Reynolds turbulent boundary layer is investigated. This is achieved by means of a variation in incident shock angle under otherwise constant flow conditions. In addition, the effect of an order-of-magnitude variation in the Reynolds number is considered. This has been done for equivalent interaction strength, based on a similar probability of occurrence of instantaneous flow separations. The measurement technique employed is two-component planar particle image velocimetry. Common mechanisms for the large-scale reflected-shock unsteadiness are deduced by means of conditional statistics based on the separation bubble height. The results indicate that both upstream and downstream mechanisms are at work, the dominant mechanism depending on the interaction strength. No significant dependence on the Reynolds number was observed for interactions with a similar probability of instantaneous flow separations.

164 citations


Journal ArticleDOI
TL;DR: In this article, an experimental study is performed on the vortex induced vibrations of a rigid flexibly mounted circular cylinder placed in a crossflow. The cylinder is allowed to oscillate in combined cross-flow and in-line motions, and the ratio of the nominal inline and transverse natural frequencies is varied systematically.
Abstract: An experimental study is performed on the vortex induced vibrations of a rigid flexibly mounted circular cylinder placed in a crossflow. The cylinder is allowed to oscillate in combined crossflow and in-line motions, and the ratio of the nominal in-line and transverse natural frequencies is varied systematically. Experiments were conducted on a smooth cylinder at subcritical Reynolds numbers between 15 000 and 60 000 and on a roughened cylinder at supercritical Reynolds numbers between 320 000 and 710 000, with a surface roughness equal to 0.23 % of the cylinder diameter. Strong qualitative and quantitative similarities between the subcritical and supercritical experiments are found, especially when the in-line natural frequency is close to twice the value of the crossflow natural frequency. In both Reynolds number regimes, the test cylinder may exhibit a 'dual-resonant' response, resulting in resonant crossflow motion at a frequency f υ , near the Strouhal frequency, and resonant in-line motion at 2 f υ . This dual resonance is shown to occur over a relatively wide frequency region around the Strouhal frequency, accompanied by stable, highly repeatable figure-eight cylinder orbits, as well as large third-harmonic components of the lift force. Under dual-resonance conditions, both the subcritical and the supercritical response is shown to collapse into a narrow parametric region in which the effective natural-frequency ratio is near the value 2, regardless of the nominal natural-frequency ratio. Some differences are noted in the magnitudes of forces and the cylinder response between the two different Reynolds number regimes, but the dual-resonant response and the resulting force trends are preserved despite the large Reynolds number difference.

163 citations


Journal ArticleDOI
TL;DR: In this article, a simulation of an incompressible, nominally zero-pressure-gradient flat-plate boundary layer from momentum thickness Reynolds number 80−1950 is presented, where the ratio of Stanton number and skin-friction coefficient deviates from the exact Reynolds analogy value of 0.5 by less than 1.5%.
Abstract: We report on our direct numerical simulation of an incompressible, nominally zero-pressure-gradient flat-plate boundary layer from momentum thickness Reynolds number 80–1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number Pr=1. Skin-friction coefficient and other boundary layer parameters follow the Blasius solutions prior to the onset of turbulent spots. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cf deviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Mean velocity and Reynolds stresses agree with experimental data over an extended turbulent region downstream of transition. Normalized rms wall-pressure fluctuation increases gradually with the streamwise growth of the turbulent boundary layer. Wall shear stress fluctuation, τw,rms′+, on the other hand, remains constant at approximately 0.44 over the range, 800

151 citations


Journal ArticleDOI
TL;DR: In this paper, a single dielectric barrier discharge (DBD) actuator near the flap shoulder is used to increase or reduce the size of the time-averaged separated region over the flap depending on the frequency of actuation.
Abstract: Control of flow separation from the deflected flap of a high-lift airfoil up to Reynolds numbers of 240,000 (15 m/s) is explored using a single dielectric barrier discharge (DBD) plasma actuator near the flap shoulder. Results show that the plasma discharge can increase or reduce the size of the time-averaged separated region over the flap depending on the frequency of actuation. High-frequency actuation, referred to here as quasi-steady forcing, slightly delays separation while lengthening and flattening the separated region without drastically increasing the measured lift. The actuator is found to be most effective for increasing lift when operated in an unsteady fashion at the natural oscillation frequency of the trailing edge flow field. Results indicate that the primary control mechanism in this configuration is an enhancement of the natural vortex shedding that promotes further momentum transfer between the freestream and separated region. Based on these results, different modulation waveforms for creating unsteady DBD plasma-induced flows are investigated in an effort to improve control authority. Subsequent measurements show that modulation using duty cycles of 50–70% generates stronger velocity perturbations than sinusoidal modulation in quiescent conditions at the expense of an increased power requirement. Investigation of these modulation waveforms for trailing edge separation control similarly shows that additional increases in lift can be obtained. The dependence of these results on the actuator carrier and modulation frequencies is discussed in detail.

149 citations


Journal ArticleDOI
TL;DR: In this article, the effect of pressure ratio on three-dimensional jet interaction dynamics is sought, and the effects of a transverse injection through a slot into supersonic flow is numerically simulated by solving Favre-averaged Navier-Stokes equations with κ − ω SST turbulence model with corrections for compressibility and transition.
Abstract: The flow field resulting from a transverse injection through a slot into supersonic flow is numerically simulated by solving Favre-averaged Navier–Stokes equations with κ − ω SST turbulence model with corrections for compressibility and transition. Numerical results are compared to experimental data in terms of surface pressure profiles, boundary layer separation location, transition location, and flow structures at the upstream and downstream of the jet. Results show good agreement with experimental data for a wide range of pressure ratios and transition locations are captured with acceptable accuracy. κ − ω SST model provides quite accurate results for such a complex flow field. Moreover, few experiments involving a sonic round jet injected on a flat plate into high-speed crossflow at Mach 5 are carried out. These experiments are three-dimensional in nature. The effect of pressure ratio on three-dimensional jet interaction dynamics is sought. Jet penetration is found to be a non-linear function of jet to free stream momentum flux ratio.

Journal ArticleDOI
Abstract: The dynamics of unstart in a floor-mounted inlet-isolator model in a Mach 5 flow are investigated experimentally using particle image velocimetry and fast-response wall pressure measurements The inlet compression is obtained with a 6-deg ramp and the isolator is a rectangular straight duct that is 254 mm high by 508 mm wide by 2423 mm long Unstart is initiated from the scramjet mode (fully supersonic in the isolator) by deflecting a motorized flap at the downstream end of the isolator With the flap fully down, the particle image velocimetry data of the started flow capture the characteristics of the isolator boundary layers and the initial inlet reflected shock system During unstart, the unstart shock system propagates upstream through the inlet-isolator The particle image velocimetry data reveal a complex, three-dimensional flow structure that is strongly dependent on viscous mechanisms Particularly, the unstart shock system propagates upstream and induces significant boundary-layer separation Side-view particle image velocimetry data show that the locations of strongest separation during unstart correlate with the impingement locations of the initial inlet shock as it reflects down the isolator For example, in the middle of unstart, the unstart shock system is associated with massive separation of the ceiling boundary layer that begins where the first inlet shock reflection impinges on the ceiling The observation that separation increases at the inlet shock reflection impingement locations is likely due to the fact that the boundary layers in these locations are subject to larger adverse pressure gradients, thus making them more susceptible to separation During the unstart process, large regions of separated flow form near the floor and ceiling with reverse flow velocities up to about 04U ∞ These regions of separated, subsonic flow appear to extend to the isolator exit, creating a path by which the isolator exit boundary condition can be communicated upstream Plan-view particle image velocimetry data show the unstart process begins with separation of the isolator sidewall boundary layers Overall, the unstart flow structure is highly three-dimensional

Journal ArticleDOI
TL;DR: In this article, the flow through a compressor passage without and with incoming free-stream grid turbulence is simulated. And the authors reveal the mechanics of breakdown to turbulence on both surfaces of the blade, and three types of breakdowns are observed; they combine characteristics of natural and bypass transition.
Abstract: The flow through a compressor passage without and with incoming free-stream grid turbulence is simulated. At moderate Reynolds number, laminar-to-turbulence transition can take place on both sides of the aerofoil, but proceeds in distinctly different manners. The direct numerical simulations (DNS) of this flow reveal the mechanics of breakdown to turbulence on both surfaces of the blade. The pressure surface boundary layer undergoes laminar separation in the absence of free-stream disturbances. When exposed to free-stream forcing, the boundary layer remains attached due to transition to turbulence upstream of the laminar separation point. Three types of breakdowns are observed; they combine characteristics of natural and bypass transition. In particular, instability waves, which trace back to discrete modes of the base flow, can be observed, but their development is not independent of the Klebanoff distortions that are caused by free-stream turbulent forcing. At a higher turbulence intensity, the transition mechanism shifts to a purely bypass scenario. Unlike the pressure side, the suction surface boundary layer separates independent of the free-stream condition, be it laminar or a moderate free-stream turbulence of intensity Tu ~ 3%. Upstream of the separation, the amplification of the Klebanoff distortions is suppressed in the favourable pressure gradient (FPG) region. This suppression is in agreement with simulations of constant pressure gradient boundary layers. FPG is normally stabilizing with respect to bypass transition to turbulence, but is, thereby, unfavourable with respect to separation. Downstream of the FPG section, a strong adverse pressure gradient (APG) on the suction surface of the blade causes the laminar boundary layer to separate. The separation surface is modulated in the instantaneous fields of the Klebanoff distortion inside the shear layer, which consists of forward and backward jet-like perturbations. Separation is followed by breakdown to turbulence and reattachment. As the free-stream turbulence intensity is increased, Tu ~ 6.5%, transitional turbulent patches are initiated, and interact with the downstream separated flow, causing local attachment. The calming effect, or delayed re-establishment of the boundary layer separation, is observed in the wake of the turbulent events.

Journal ArticleDOI
TL;DR: In this article, the authors provide detailed data on the instantaneous and phase averaged inner structure of the tip flow, and evolution of the TLV, based on series of high resolution planar particle image velocimetry measurements performed in a transparent waterjet pump fitted into an optical refractive index matched test facility.
Abstract: The complex flow field in the tip region of a turbomachine rotor, including the tip leakage flow and tip leakage vortex (TLV), has been studied for decades. Yet many associated phenomena are still not understood. This paper provides detailed data on the instantaneous and phase averaged inner structure of the tip flow, and evolution of the TLV. Observations are based on series of high resolution planar particle image velocimetry measurements performed in a transparent waterjet pump fitted into an optical refractive index matched test facility. Velocity distributions and turbulence statistics are obtained in several meridional planes inside the rotor. We observe that the instantaneous TLV structure is composed of several unsteady vortex filaments that propagate into the blade passage. These filaments are first embedded into a vortex sheet generated at the suction side of the blade tip, and then they wrap around each other and roll up into the TLV. These vortices do not have sufficient time to merge into a single compact structure within the blade passage. We also find that the leakage vortex induces flow separation at the casing endwall and entrains the casing boundary layer with its counter-rotating vorticity. As it propagates in the rotor passage, the TLV migrates towards the pressure side of the neighboring blade. Unsteadiness associated with observed vortical structures is also investigated. We notice that, at early stages of the TLV evolution, turbulence is elevated in the vortex sheet, in the flow entrained from the endwall, and near the vortex core. Interestingly, the turbulence observed around the core is not consistent with the local distribution of turbulent kinetic energy production rate. This mismatch indicates that, given a TLV section, production likely occurs at preceding stages of the vortex evolution. Then, the turbulence is convected to the core of the TLV, and we suggest that this transport has substantial component along the vortex. Because we observe that the meandering of vortex filaments dominate the flow in the passage, we decompose the unsteadiness surrounding the TLV core to contributions from interlaced vortices and broadband turbulence. Results of this decomposition show that the two contributions are of the same order of magnitude. The TLV is investigated also beyond the trailing edge of the rotor blade. During these late stages of its evolution, the TLV approaches the pressure side of the neighboring blade and vortex breakdown occurs, causing rapid broadening of the phase average core, with little change in overall circulation. Associated turbulence occupies almost half the width of the blade passage and turbulence production there is also broadly distributed. Proximity of the TLV to the pressure side of the neighboring blade also affects entrainment of flow into the incoming tip region.Copyright © 2010 by ASME

Journal ArticleDOI
TL;DR: In this article, large-scale coherent streaks are forced on the roof of the Ahmed body by an array of suitably shaped cylindrical roughness elements and are amplified by the mean shear through the lift-up effect.
Abstract: Separation on the rear-end of an Ahmed body is suppressed by means of large-scale coherent streaks forced on the roof of the model. These streaks originate from an array of suitably shaped cylindrical roughness elements and are amplified by the mean shear through the lift-up effect. Interacting with the mean velocity field at leading order, they induce a strong controlled spanwise modulation. The resulting streaky base flow is observed to sustain the adverse pressure gradient since PIV measurements as well as static wall pressure distributions show that the re-circulation bubble completely vanishes. These modifications of the topology of the flow are associated with a substantial drag reduction, which can be of about 10% when the roughness array is optimally placed on the roof of the bluff body.

Journal ArticleDOI
TL;DR: In this article, the authors identify the differences between two commonly used definitions of span efficiency and show that for the case of airfoil sections and finite wings at chordwise Reynolds numbers less than 10 5, neither one has values close to those commonly assumed in the aeronautics literature.
Abstract: Elegant and inviscid analytical theory can predict the induced drag on lifting wings of finite span. The theoretical prediction is then often modified by multiplication with a dimensionless coefficient for which the departure from a value of 1 is used as a way to incorporate realistic and necessary departures from the idealized model. Unfortunately, there are conflicting definitions of these dimensionless coefficients, often known as span efficiencies, so that even if numerical values are assigned in a clear and transparent fashion, their application and validity remain unclear. Here, the differences between two commonly used definitions of span efficiency are identified and it is shown that for the case of airfoil sections and finite wings at chordwise Reynolds numbers less than 10 5 , neither one has values close to those commonly assumed in the aeronautics literature. The cause of these significant viscous modifications to inviscid theory is traced to the movement of separation points from the trailing edge of real airfoils. A modified nomenclature is suggested to reduce the likelihood of confusion, and appropriate formulations for the drag of streamlined bodies in viscous flows at moderate Reynolds number are considered, with application to small-scale flying devices, both natural and engineered.

01 Feb 2010
TL;DR: In this article, a high-fidelity simulation technique was applied to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers.
Abstract: : The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re(sub c) = 10(exp 4)), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil.

Journal ArticleDOI
TL;DR: In this paper, a simplified junction flow test case is designed according to a literature review to favor the onset of a corner separation and the salient statistical and fluctuating properties of the flow are scrutinized using large eddy simulation and wind tunnel tests, which are carried out at a Reynolds number based on the wing chord c and the free stream velocity U∞ of Rec=2.8×105.
Abstract: Junction flows may suffer from secondary flows such as horseshoe vortices and corner separations that can dramatically impair the performances of aircrafts. The present article brings into focus the unsteady aspects of the flow at the intersection of a wing and a flat plate. The simplified junction flow test case is designed according to a literature review to favor the onset of a corner separation. The salient statistical and fluctuating properties of the flow are scrutinized using large eddy simulation and wind tunnel tests, which are carried out at a Reynolds number based on the wing chord c and the free stream velocity U∞ of Rec=2.8×105. As the incoming boundary layer at Reθ=2100 (θ being the boundary layer momentum thickness one-half chord upstream the junction) experiences the adverse pressure gradient created by the wing, a three dimensional separation occurs at the nose of the junction leading to the formation of a horseshoe vortex. The low frequency, large scale bimodal behavior of the horseshoe vortex at the nose of the junction is characterized by multiple frequencies within f.δ/U∞=[0.05−0.1] (where δ is the boundary layer thickness one-half chord upstream the wing). Downstream of the bimodal region, the meandering of the core of the horseshoe vortex legs in the crossflow planes is scrutinized. It is found that the horseshoe vortex oscillates around a mean location over an area covering almost 10% of the wing chord in the tranverse plane at the trailing edge at normalized frequencies around f.δ/U∞=0.2–0.3. This so-called meandering is found to be part of a global dynamics of the horseshoe vortex initiated by the bimodal behavior. Within the corner, no separation is observed and it is shown that a high level of anisotropy (according to Lumley’s formalism) is reached at the intersection of the wing and the flat plate, which makes the investigated test case challenging for numerical methods. The conditions of apparition of a corner separation are eventually discussed and we assume that the vicinity of the horseshoe vortex suction side leg might prevent the corner separation. It is also anticipated that higher Reynolds number junction flows are more likely to suffer from such separations.

01 Jun 2010
TL;DR: In this paper, a hybrid structured/unstructured solver is proposed to support both grid topologies in the same modeling, which can reproduce transport phenomena and the transitional effects regardless of the used grid topology.
Abstract: In recent years, further developments in the computer technology have led to advanced CFD codes being able to analyze complex three-dimensional flow behavior of turbo-machines. At present, most components in regular shape can be meshed with high-quality structured grids. However, the generation of structured grids is very difficult for some parts or areas, such as casing treatments or coolant channels, even if multi-block topologies are applied. In these cases, unstructured grids have to be introduced. Therefore, a hybrid structured/unstructured solver should be favored supporting both grid topologies in the same modeling. This paper presents recent progress in the development of the hybrid CFD solver with regard to the transition modeling. In low pressure turbines, laminar boundary layers are usually encountered due to the prevalent low Reynolds numbers. On the one hand, they produce fewer losses in comparison with turbulent boundary layers. On the other hand, they are more sensitive to flow separation leading to higher overall losses. Therefore, appropriate transition models have to be included in the CFD solver to be able to predict the overall losses quantitatively. The CFD code is now able to reproduce transport phenomena and the transitional effects regardless of the used grid topology. To validate and demonstrate the efficiency of the advancements, two test cases are introduced, a three-dimensional planar turbine cascade and two-dimensional turbine profile for unsteady analysis.

Journal ArticleDOI
TL;DR: The LES WALE model, which can be used without wall functions or global damping functions, is investigated within the lattice Boltzmann framework, which produces an efficient and fast scheme due to its algebraic character.
Abstract: Turbulence models which can perform the transition from laminar flow to fully developed turbulent flow are of key importance in industrial applications. A promising approach is the LES WALE model, which can be used without wall functions or global damping functions. The model produces an efficient and fast scheme due to its algebraic character. Additionally, its prediction of the transition from laminar to turbulent regimes has shown promising results. In this work, the LES WALE model is investigated within the lattice Boltzmann framework. For validation purposes, various test cases are presented. First, a channel flow at a Reynolds number of 6876 is investigated. Secondly, the flow around a wall-mounted cube at various Reynolds numbers is determined. The flow regime varies from laminar, to transitional, to fully turbulent conditions at a Reynolds number of 40,000 with respect to the cube height.

Proceedings ArticleDOI
28 Jun 2010
TL;DR: In this paper, a co-flow wall jet is deflected normal to the airfoil surface characterized with a saddle point and the saddle point moves downstream and eventually disappears when the flow is attached.
Abstract: The jet mixing of a co-flow jet (CFJ) airfoil is investigated to understand the mechanism of lift enhancement, drag reduction, and stall margin increase. Digital Particle Image Velocimetry, flow visualization and aerodynamic forces measurements are used to reveal the insight of the CFJ airfoil mixing process. At low AoA and low momentum coefficient, the mixing between the wall jet and mainflow is dominant with large structure coherent structures for the attached flows. When the momentum coefficient is increased, the large vortex structure disappears. At high AoA with flow separation, the CFJ creates a upstream flow strip between two counter rotating vertical shear layer, i.e., the outer shear layer and inner flow induced by CFJ. The UFS is characterized with large vortex free region. The co-flow wall jet is deflected normal to the airfoil surface characterized with a saddle point. With increased momentum coefficient of the CFJ, the saddle point moves downstream and eventually disappears when the flow is attached. Turbulence plays a key role in mixing the CFJ with mainflow to transport high kinetic energy from the jet to mainflow so that the mainflow can remain attached at high AoA to generate high lift. When the flow is separated, increased CFJ momentum coefficient also increases the turbulence intensity at jet injection mixing region.

Journal ArticleDOI
TL;DR: In this article, a single dielectric barrier discharge plasma actuator for controlling turbulent boundary-layer separation from the deflected flap of a high-lift airfoil is investigated between Reynolds numbers of 240,000 (15 m/s) and 750,000(45 m/S).
Abstract: The efficacy of a single dielectric barrier discharge plasma actuator for controlling turbulent boundary-layer separation from the deflected flap of a high-lift airfoil is investigated between Reynolds numbers of 240,000 (15 m/s) and 750,000 (45 m/s). Momentum coefficients for the dielectric barrier discharge plasma actuator are approximately an order of magnitude lower than those usually employed for such studies, yet control authority is still realized through amplification of natural vortex shedding from the flap shoulder, which promotes momentum transfer between the freestream and separated region. This increases dynamic loading on the flap and further organizes turbulent fluctuations in the wake. The measured lift enhancement is primarily due to upstream effects from increased circulation around the entire model, rather than full reattachment to the deflected flap surface. Lift enhancement via instability amplification is found to be relatively insensitive to changes in angle of attack, provided that the separation location and underlying dynamics do not change. The modulation waveform used to excite low-frequency perturbations with a high-frequency plasma-carrier signal has a considerable effect on the actuator performance. Control authority decreases with increasing Reynolds number and flap deflection, highlighting the necessity for further improvement of plasma actuators for use in realistic takeoff and landing transport aircraft applications. These findings are compared to studies on a similar high-lift platform using piezoelectric-driven zero-net-mass flux actuation.

Journal ArticleDOI
TL;DR: In this paper, the results of an experimental investigation of turbulent solitary wave boundary layers, simulated by solitary motion in an oscillating water tunnel, were presented, and two kinds of measurements were made: bed shear stress measurements and velocity measurements.
Abstract: This study continues the investigation of wave boundary layers reported by Carstensen, Sumer & Fredsoe (J. Fluid Mech., 2010, part 1 of this paper). The present paper summarizes the results of an experimental investigation of turbulent solitary wave boundary layers, simulated by solitary motion in an oscillating water tunnel. Two kinds of measurements were made: bed shear stress measurements and velocity measurements. The experiments show that the solitary-motion boundary layer experiences three kinds of flow regimes as the Reynolds number is increased: (i) laminar regime; (ii) laminar regime where the boundary-layer flow experiences a regular array of vortex tubes near the bed over a short period of time during the deceleration stage; and (iii) transitional regime characterized with turbulent spots, revealed by single/multiple, or, sometimes, quite dense spikes in the bed shear stress traces. Supplementary synchronized flow visualization tests confirmed the presence of the previously mentioned flow features. Information related to flow resistance are also given in the paper.

Journal ArticleDOI
Abstract: The mutual interaction of laminar-turbulent transition and mean flow evolution is studied in a pressure-induced laminar separation bubble on a flat plate. The flat-plate boundary layer is subjected to a sufficiently strong adverse pressure gradient that a separation bubble develops. Upstream of the bubble a small-amplitude disturbance is introduced which causes transition. Downstream of transition, the mean flow strongly changes and, due to viscous-inviscid interaction, the overall pressure distribution is changed as well. As a consequence, the mean flow also changes upstream of the transition location. The difference in the mean flow between the forced and the unforced flows is denoted the mean flow deformation. Two different effects are caused by the mean flow deformation in the upstream, laminar part: a reduction of the size of the separation region and a stabilization of the flow with respect to small, linear perturbations. By carrying out numerical simulations based on the original base flow and the time-averaged deformed base flow, we are able to distinguish between direct and indirect nonlinear effects. Direct effects are caused by the quadratic nonlinearity of the Navier-Stokes equations, are associated with the generation of higher harmonics and are predominantly local. In contrast, the stabilization of the flow is an indirect effect, because it is independent of the Reynolds stress terms in the laminar region and is solely governed by the non-local alteration of the mean flow via the pressure. © 2010 Cambridge University Press.

Journal ArticleDOI
TL;DR: In this article, steady and unsteady plasma aerodynamic actuations suppress the corner separation effectively, and the maximum relative reduction in total pressure loss coefficient achieved is up to 28% at 70% blade span.
Abstract: This paper reports experimental results on using steady and unsteady plasma aerodynamic actuation to control the corner separation, which forms over the suction surface and end wall corner of a compressor cascade blade passage. Total pressure recovery coefficient distribution was adopted to evaluate the corner separation. Corner separation causes significant total pressure loss even when the angle of attack is 0°. Both steady and unsteady plasma aerodynamic actuations suppress the corner separation effectively. The control effect obtained by the electrode pair at 25% chord length is as effective as that obtained by all four electrode pairs. Increasing the applied voltage improves the control effect while it augments the power requirement. Increasing the Reynolds number or the angle of attack makes the corner separation more difficult to control. The unsteady actuation is much more effective and requires less power due to the coupling between the unsteady actuation and the separated flow. Duty cycle and excitation frequency are key parameters in unsteady plasma flow control. There are thresholds in both the duty cycle and the excitation frequency, above which the control effect saturates. The maximum relative reduction in total pressure loss coefficient achieved is up to 28% at 70% blade span. The obvious difference between steady and unsteady actuation may be that wall jet governs the flow control effect of steady actuation, while much more vortex induced by unsteady actuation is the reason for better control effect.

Journal ArticleDOI
TL;DR: In this paper, a numerical study of transient growth experienced by infinitesimal perturbations to flow in an axisymmetric pipe with a sudden 1-2 diametral expansion is presented.
Abstract: Results are presented from a numerical study of transient growth experienced by infinitesimal perturbations to flow in an axisymmetric pipe with a sudden 1-2 diametral expansion. First, the downstream reattachment point of the steady laminar flow is accurately determined as a function of Reynolds number and it is established that the flow is linearly stable at least up to Re=1400. A direct method is used to calculate the optimal transient energy growth for specified time horizon tau, Re up to 1200, and low-order azimuthal wavenumber m. The critical Re for the onset of growth with different m is determined. At each Re the maximum growth is found in azimuthal mode m=1 and this maximum is found to increase exponentially with Re. The time evolution of optimal perturbations is presented and shown to correspond to sinuous oscillations of the shear layer. Suboptimal perturbations are presented and discussed. Finally, direct numerical simulation in which the inflow is perturbed by Gaussian white noise confirms the presence of the structures determined by the transient growth analysis. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3313931]

Journal ArticleDOI
TL;DR: In this article, the authors measured the flow field downstream of a body of revolution for Reynolds numbers based on a model length ranging from 1.1 × 106 to 67 × 106.
Abstract: Results are presented on the flow field downstream of a body of revolution for Reynolds numbers based on a model length ranging from 1.1 × 106 to 67 × 106. The maximum Reynolds number is more than an order of magnitude larger than that obtained in previous laboratory wake studies. Measurements are taken in the intermediate wake at locations 3, 6, 9, 12 and 15 diameters downstream from the stern in the midline plane. The model is based on an idealized submarine shape (DARPA SUBOFF), and it is mounted in a wind tunnel on a support shaped like a semi-infinite sail. The mean velocity distributions on the side opposite the support demonstrate self-similarity at all locations and Reynolds numbers, whereas the mean velocity distribution on the side of the support displays significant effects of the support wake. None of the Reynolds stress distributions of the flow attain self-similarity, and for all except the lowest Reynolds number, the support introduces a significant asymmetry into the wake which results in a decrease in the radial and streamwise turbulence intensities on the support side. The distributions continue to evolve with downstream position and Reynolds number, although a slow approach to the expected asymptotic behaviour is observed with increasing distance downstream.

Journal ArticleDOI
M. S. Howe1
TL;DR: In this paper, an analysis of the noise generated during the passage of quiescent temperature/entropy inhomogeneities through regions of rapidly accelerated mean flow is made of the vortex sound generated by the jet.
Abstract: An analysis is made of the noise generated during the passage of quiescent temperature/entropy inhomogeneities through regions of rapidly accelerated mean flow. This is an important source of jet engine core noise. Bake et al. (J. Sound Vib., vol. 326, 2009, pp. 574–598) have used an ‘entropy wave generator’ coupled with a converging–diverging nozzle to perform a series of canonical measurements of the sound produced when the inhomogeneity consists of a nominally uniform slug of hot gas. When flow separation and jet formation occur in the diffuser section of the nozzle, it is shown in this paper that the vortex sound generated by the jet is strongly correlated with the entropy noise produced by the slug and that the overall noise level is significantly reduced. Streamwise ‘stretching’ of the hot slug during high subsonic acceleration into the nozzle and the consequent attenuation of the entropy gradient in the nozzle are shown to significantly decrease the effective rate at which indirect combustion noise increases with the Mach number. Numerical predictions indicate that this is responsible for the peak observed by Bake et al. in the entropy-generated sound pressure at a nozzle Mach number near 0.6.

Journal ArticleDOI
TL;DR: In this article, a nonlinear time-domain aeroelastic methodology has been integrated via tightly coupling a geometrically exact nonlinear intrinsic beam model and the generalized unsteady vortex-lattice aerodynamic model with vortex roll-up and free wake.
Abstract: Nonlinear aeroelastic analysis is essential for high-altitude long-endurance (HALE) aircraft. In the current paper, we have presented a computational aeroelastic tool for nonlinear-aerodynamics/nonlinear-structure interaction. Specifically, a consistent nonlinear time-domain aeroelastic methodology has been integrated via tightly coupling a geometrically exact nonlinear intrinsic beam model and the generalized unsteady vortex-lattice aerodynamic model with vortex roll-up and free wake. The effects of discrete gust as well as flow separation at various angles of attack from attached flow to the stall and poststall ranges are also included in the nonlinear aerodynamic model. A HALE-wing model is analyzed as a numerical example. The trim angle of attack is first found for the wing, and the results show that aeroelastic instability could occur at higher angles of attack. The HALE-wing model under the trim condition is then analyzed for various gust profiles to which it is subject. It is found that for certain gust levels, the elastic deformations of the HALE wing tend to become unstable: notably, the in-plane deflections become very significant. It is noted for the unstable solution of the HALE wing that the flow may be well beyond the stall range. An engineering approach with the use of the nonlinear sectional lift is attempted to consider such stall effects.

Journal ArticleDOI
TL;DR: In this article, the possible states in the flow around two identical circular cylinders in tandem arrangements are investigated for configurations in the vicinity of the drag inversion separation, and the hysteresis in the transition between the shedding regimes is studied and the relationship between secondary instabilities and shedding regime determination is addressed.
Abstract: The possible states in the flow around two identical circular cylinders in tandem arrangements are investigated for configurations in the vicinity of the drag inversion separation. By means of numerical simulations, the hysteresis in the transition between the shedding regimes is studied and the relationship between (three-dimensional) secondary instabilities and shedding regime determination is addressed. The differences observed in the behavior of two- and three-dimensional flows are analyzed, and the regions of bistable flow are delimited. Very good agreement is found between the proposed scenario and results available in the literature.