scispace - formally typeset
Search or ask a question

Showing papers on "Incompatible element published in 2014"


Journal ArticleDOI
TL;DR: Isolatednanoclusters, measuring about 10nm and spaced 10−50nm apart, are enriched in incompatible elements including radiogenic Pb with unusually high 207 Pb/ 206 Pbratios as discussed by the authors.
Abstract: The only physical evidence from the earliest phases of Earth’s evolution comes from zircons, ancient mineral grains that can be dated using the U‐Th‐Pb geochronometer 1 . Oxygen isotope ratios from such zircons have been used to infer when the hydrosphere and conditions habitable to life were established 2,3 . Chemical homogenization of Earth’s crust and the existence of a magma ocean have not been dated directly, but must have occurred earlier 4 . However, the accuracy of the U‐Pbzirconagescanplausiblybebiasedbypoorlyunderstood processes of intracrystalline Pb mobility 5‐7 . Here we use atomprobe tomography 8 to identify and map individual atoms in the oldest concordant grain from Earth, a 4.4-Gyr-old Hadean zircon with a high-temperature overgrowth that formed about 1Gyrafterthemineral’score.Isolatednanoclusters,measuring about 10nm and spaced 10‐50nm apart, are enriched in incompatible elements including radiogenic Pb with unusually high 207 Pb/ 206 Pbratios.Wedemonstratethatthelengthscales of these clusters make U‐Pb age biasing impossible, and that they formed during the later reheating event. Our tomography data thereby confirm that any mixing event of the silicate Earth must have occurred before 4.4Gyr ago, consistent with

356 citations


Journal ArticleDOI
01 Dec 2014-Lithos
TL;DR: The Meso-Tethyan oceanic plateau of central Tibet has been found to contain pillow basalt and ultramafic intrusives and cumulates, along with other blocks of limestone, radiolarian chert, graywacke, and shale as discussed by the authors.

175 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used magnetotelluric (MT) data from stable lithosphere to understand the electrical resistivity of the entire lithospheric column and are therefore one of the most important data sources for understanding the structure, composition and evolution of the lithosphere.
Abstract: Magnetotelluric (MT) data can image the electrical resistivity of the entire lithospheric column and are therefore one of the most important data sources for understanding the structure, composition and evolution of the lithosphere. However, interpretations of MT data from stable lithosphere are often ambiguous. Recent results from mineral physics studies show that, from the mid-crust to the base of the lithosphere, temperature and the hydrogen content of nominally anhydrous minerals are the two most important controls on electrical conductivity. Graphite films on mineral grain boundaries also enhance conductivity but are stable only to the uppermost mantle. The thermal profile of most stable lithosphere can be well constrained, so the two important unknowns that can affect the conductivity of a lithospheric section are hydrogen content and graphite films. The presence of both of these factors is controlled by the geological history of the lithosphere. Hydrogen in nominally anhydrous minerals behaves as an incompatible element and is preferentially removed during melting or high-temperature tectonothermal events. Grain-boundary graphite films are only stable to ~900 °C so they are also destroyed by high-temperature events. Conversely, tectonic events that enrich the lithosphere in incompatible elements, such as interaction with fluids from a subducting slab or a plume, can introduce both hydrogen and carbon into the lithosphere and therefore increase its electrical conductivity. Case studies of MT results from central Australia and the Slave Craton in Canada suggest that electrical conductivity can act as a proxy for the level of enrichment in incompatible elements of the lithosphere.

172 citations


Journal ArticleDOI
TL;DR: The shoshonitic intrusions of eastern Tibet, which range in age from 33 to 41 Ma and in composition from ultramafic to felsic, were produced during the collision of India with Eurasia as mentioned in this paper.
Abstract: The shoshonitic intrusions of eastern Tibet, which range in age from 33 to 41 Ma and in composition from ultramafic (SiO2 = 42 %) to felsic (SiO2 = 74 %), were produced during the collision of India with Eurasia. The mafic and ultramafic members of the suite are characterized by phenocrysts of phlogopite, olivine and clinopyroxene, low SiO2, high MgO and Mg/Fe ratios, and olivine forsterite contents of Fo87 to Fo93, indicative of equilibrium with mantle olivine and orthopyroxene. Direct melting of the mantle, on the other hand, could not have produced the felsic members. They have a phenocryst assemblage of plagioclase, amphibole and quartz, high SiO2 and low MgO, with Mg/Fe ratios well below the values expected for a melt in equilibrium with the mantle. Furthermore, the lack of decrease in Cr with increasing SiO2 and decreasing MgO from ultramafic to felsic rocks precludes the possibility that the felsic members were derived by fractional crystallization from the mafic members. Similarly, magma mixing, crustal contamination and crystal accumulation can be excluded as important processes. Yet all members of the suite share similar incompatible element and radiogenic isotope ratios, which suggests a common origin and source. We propose that melting for all members of the shoshonite suite was initiated in continental crust that was thrust into the upper mantle at various points along the transpressional Red River-Ailao Shan-Batang-Lijiang fault system. The melt formed by high-degree, fluid-absent melting reactions at high-T and high-P and at the expense of biotite and phengite. The melts acquired their high concentrations of incompatible elements as a consequence of the complete dissolution of pre-existing accessory minerals. The melts produced were quartz-saturated and reacted with the overlying mantle to produce garnet and pyroxene during their ascent. The felsic magmas reacted little with the adjacent mantle and preserved the essential features of their original chemistry, including their high SiO2, low Ni, Cr and MgO contents, and low Mg/Fe ratio, whereas the mafic and ultramafic magmas are the result of extensive reaction with the mantle. Although the mafic magmas preserved the incompatible element and radiogenic isotope ratios of their crustal source, buffering by olivine and orthopyroxene extensively modified their MgO, Ni, Cr, SiO2 contents and Mg/Fe ratio to values dictated by equilibrium with the mantle.

157 citations


Journal ArticleDOI
TL;DR: In this article, the authors performed numerical calculations of the thermo-chemical evolution adopting new data obtained by the Dawn mission such as mass, bulk density and size of the asteroid 4 Vesta to better understand its early evolution.

142 citations


Journal ArticleDOI
TL;DR: In this article, a generalized geochemical model tracking the evolution of trace elements in a magma reservoir concurrently experiencing crystallization and extraction of interstitial melt is presented, which allows for various dependencies between crystallinity, partition coefficients for variably compatible and/or incompatible elements, and melt extraction efficiency.

139 citations


16 Dec 2014
TL;DR: In this paper, a generalized geochemical model tracking the evolution of trace elements in a magma reservoir concurrently experiencing crystallization and extraction of interstitial melt is presented, which allows for various dependencies between crystallinity, partition coefficients for variably compatible and/or incompatible elements, and melt extraction efficiency.
Abstract: The formation of crystal-poor high-silica rhyolite via extraction of interstitial melt from an upper crustal mush predicts the complementary formation of large amounts of (typically unerupted) silicic cumulates. However, identification of these cumulates remains controversial. One hindrance to our ability to identify them is a lack of clear predictions for complementary chemical signatures between extracted melts and their residues. To address this discrepancy, we present a generalized geochemical model tracking the evolution of trace elements in a magma reservoir concurrently experiencing crystallization and extraction of interstitial melt. Our method uses a numerical solution rather than analytical, thereby allowing for various dependencies between crystallinity, partition coefficients for variably compatible and/or incompatible elements, and melt extraction efficiency. Results reveal unambiguous fractionation signatures for the extracted melts, while those signatures are muted for their cumulate counterparts. Our model is first applied to a well-constrained example (Searchlight pluton, USA), and provides a good fit to geochemical data. We then extrapolate our results to understanding the relationship between volcanic and plutonic silicic suites on a global scale. Utilizing the NAVDAT database to identify crystal accumulation or depletion signatures for each suite, we suggest that many large granitoids are indeed silicic cumulates, although their crystal accumulation signature is expected to be subtle.

123 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe the compositional evolution of a magma chamber undergoing simultaneous recharge (R), evacuation (E), and fractional crystallization (FC) to reach a steady state composition.

109 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented new data relating to the tectonic evolution of the Zhonggang ocean island, within the Mesozoic Banggongco-Nujiang suture zone of northern Tibet, and discussed the implications of these data for the evolution of this region.
Abstract: This study presents new data relating to the tectonic evolution of the Zhonggang ocean island, within the Mesozoic Banggongco–Nujiang suture zone of northern Tibet, and discusses the implications of these data for the evolution of this region. Thirteen basalt and ten gabbro samples were collected from a sampling transect through this area; these samples have light rare earth element (LREE)-enriched chondrite-normalized REE patterns, and are enriched in highly incompatible elements, yielding primitive-mantle-normalized trace-element variation patterns that are similar to ocean island basalts (OIB). A gabbro dike intruded into basalt of the Zhonggang ocean island and was overlain by basaltic conglomerate, suggesting that this dike was formed after the basalt, but before the basaltic conglomerate. The gabbro dike yields an LA–ICP–MS zircon U–Pb age of 116.2 ± 4.1 Ma, indicating the timing of formation of the Zhonggang ocean island, and suggesting in turn that the Banggongco–Nujiang Neo-Tethys Ocean remained ...

101 citations


Journal ArticleDOI
TL;DR: In this article, He isotope and major, trace and volatile element compositions for basaltic scoriae from five monogenetic cones emplaced along the fissure zone of Pico Island, the youngest island of the Azores archipelago.
Abstract: The concept of an 'Azores mantle plume' has been widely debated, and the existence of an Azores hotspot questioned. In an effort to shed new light on this controversy, we present He isotope and major, trace and volatile element compositions for basaltic scoriae from five monogenetic cones emplaced along the fissure zone of Pico Island, the youngest island of the Azores archipelago. The bulk scoriae and lavas are moderately alkaline basalts, and their He isotope ratios, determined on olivine crystals, vary between 10*2 and 11*1 ± 0*1 Ra. In contrast, melt inclusions hosted in olivine (Fo76-83*5) span a large range of compositions (K2O = 0*7-1*7 wt %; Ce = 32-65 ppm; Nb = 21-94 ppm), which extends the compositional field of lavas erupted along the Pico fissure zone. This chemical evolution is predominantly controlled by polybaric fractional crystallization. Most melt inclusions share similar enrichments in large ion lithophile and light rare earth elements, and trace element ratios (La/Sm, La/Yb, Sr/Nd, Ta/Th, Zr/Y) with their bulk-rocks. Only a few of them differ in their lower contents of incompatible elements and La/Sm, Li/Ta and Na/K ratios, a feature that is ascribed to distinct conditions of melting. As a whole, the melt inclusions preserve high and variable volatile contents, and contain up to 1*8-2*0 wt % of H2O and 0*4 wt % of CO2. The total fluid pressures, retrieved from the dissolved CO2 and H2O concentrations, and the PCO2 from fluid inclusions, indicate magma ponding and crystallization at the crust-mantle boundary (ca. 18 km deep). The H2O/Cl and H2O/Ce ratios in the inferred parental undegassed basalts of the Pico fissure zone average 0*036 ± 0*006 and 259 ± 21, respectively. The latter value is significantly higher than that reported for typical mid-ocean ridge basalts from the southern Mid-Atlantic Ridge, but is similar to published ratios for submarine undegassed basalts from the Azores platform. Combining the calculated compositions of Pico primary magmas formed by low degrees of melting with recent geophysical data for the Azores, we propose a model for Azores magma generation involving the decompression melting of a water-enriched mantle domain (H2O = 680-570 ppm) with an estimated temperature excess of ≤120°C with respect to the Mid-Atlantic Ridge.

92 citations


Journal ArticleDOI
TL;DR: The Sm/Nd—142Nd/144Nd correlation shown by both ferroan anorthosite and Mg-suite rocks is coincident with the trend defined by mare and KREEP basalts, and is in accord with the model of lunar formation via giant impact into Earth at ca 4.4 Ga.
Abstract: New Rb-Sr, 146,147Sm-142,143Nd and Lu-Hf isotopic analyses of Mg-suite lunar crustal rocks 67667, 76335, 77215 and 78238, including an internal isochron for norite 77215, were undertaken to better define the time and duration of lunar crust formation and the history of the source materials of the Mg-suite. Isochron ages determined in this study for 77215 are: Rb-Sr=4450±270 Ma, 147Sm-143Nd=4283±23 Ma and Lu-Hf=4421±68 Ma. The data define an initial 146Sm/144Sm ratio of 0.00193±0.00092 corresponding to ages between 4348 and 4413 Ma depending on the half-life and initial abundance used for 146Sm. The initial Nd and Hf isotopic compositions of all samples indicate a source region with slight enrichment in the incompatible elements in accord with previous suggestions that the Mg-suite crustal rocks contain a component of KREEP. The Sm/Nd—142Nd/144Nd correlation shown by both ferroan anorthosite and Mg-suite rocks is coincident with the trend defined by mare and KREEP basalts, the slope of which corresponds to ages between 4.35 and 4.45 Ga. These data, along with similar ages for various early Earth differentiation events, are in accord with the model of lunar formation via giant impact into Earth at ca 4.4 Ga.

Journal ArticleDOI
TL;DR: The contaminated continental basaltic lavas have higher 87Sr/86Sr, concentrations of incompatible trace elements and lower eNd relative to the arc related ones.

Journal ArticleDOI
15 Sep 2014-Lithos
TL;DR: The Purang ophiolite massif was thrust over an Upper Cretaceous melange south of the Yarlung-Zangbo Suture Zone (YZSZ) in SW Tibet as discussed by the authors.

Journal ArticleDOI
TL;DR: In this article, the geochemical characteristics of CAMP basalts from Triassic-Jurassic basins in northeastern USA and Nova Scotia (Canada) have been analyzed and three chemical groups are defined: the Rapidan sill, which has 206Pb/204Pbini.
Abstract: The Central Atlantic Magmatic Province (CAMP) is one of the largest igneous provinces on Earth, with an areal extent exceeding 10e7km2. Here we document the geochemical characteristics of CAMP basalts from Triassic-Jurassic basins in northeastern USA and Nova Scotia (Canada). The CAMP rocks occur as lava flows, sills and dykes. All of our analysed samples show chemical characteristics typical of CAMP basalts with low titanium content, which include enrichment in the most incompatible elements and negative Nb anomalies. All the basalts also show enriched Sr-Nd-Pb initial (t=201Ma) isotopic compositions (206Pb/204Pbini. = 18·155-18·691, 207Pb/204Pbini. = 15·616-15·668, 208Pb/204Pbini. = 38·160-38·616, 143Nd/144Ndini. = 0·512169-0·512499). On the basis of stratigraphy, rare earth element (REE) chemistry and Sr-Nd-Pb isotope composition, three chemical groups are defined. The Hook Mountain group, with the lowest La/Yb ratios, initial 206Pb/204Pbini. >18·5 and 143Nd/144Ndini.>0·51238, comprises all the latest and upper stratigraphic units. The Preakness group, with intermediate La/Yb ratios, 206Pb/204Pbini.>18·5 and 0·51233>143Nd/144Ndini.>0·51225, comprises the intermediate units. The Orange Mountain group has the highest La/Yb ratios and 143Nd/144Ndini.<0·51235 and involves all the earliest and stratigraphically lowest units, including the entire North Mountain basalts from Nova Scotia. In this last group, three sub-groups may be distinguished: the Rapidan sill, which has 206Pb/204Pbini. higher than 18·5, the Shelburne sub-group, which has 143Nd/144Ndini.<0·51225, and the remaining Orange Mt samples. With the exception of one sample, the Eastern North America (ENA) CAMP basalts display initial 187Os/188Os ratios in the range of mantle-derived magmas (<0·15). Simple modelling shows that the composition of the ENA CAMP basalts cannot plausibly be explained solely by crustal contamination of oceanic island basalt (OIB), mid-ocean ridge basalt (MORB) or oceanic plateau basalt (OPB) magmas. Mixing of such magma compositions with sub- continental lithospheric mantle (SCLM)-derived melts followed by crustal contamination, by either assimilation-fractional crystallization (AFC) or assimilation through turbulent ascent (ATA) pro- cesses is somewhat more successful. However, this latter scenario does not reproduce the REE and isotopic composition of the ENA CAMP in a fully satisfactory manner. Alternatively, we propose a model in which asthenospheric mantle overlying a subducted slab (i.e. mantle wedge) was enriched during Cambrian to Devonian subduction by sedimentary material, isotopically equivalent to Proterozoic-Lower Paleozoic crustal rocks. Subsequently, after subduction ceased, the isotopic composition of this mantle evolved by radioactive decay for another 170 Myr until the CAMP magmatic event. Varying amounts and compositions of the incorporated sedimentary component coupled with radiogenic ingrowth over time can account for the main geochemical characteristics of the ENA CAMP (enriched incompatible element patterns, negative Nb anomalies, enriched Sr-Nd-Pb isotopic composition) and the differences between the three chemical groups.

Journal ArticleDOI
TL;DR: In this paper, the authors determined the initial Hf isotopic compositions of four samples, two KREEP basalts and two Mg-suite norites, and used the corrected results to calculate a 176 Lu- 176 Hf urKREEP model age of 4353 −± −37 −Ma and the 176 Lu/ 177 Hf of urKreEP to be 0.0153 −± 0.0033.

Journal ArticleDOI
01 Feb 2014-Lithos
TL;DR: In this paper, the authors present new geochemical data (major and trace elements, mineral chemistry and combined Sr-Nd-Pb-Os analyses) on 132 samples, aiming to investigate the mantle source of these rocks and correlate them with magmatism from other areas of the CAMP.

Journal ArticleDOI
Qihai Shu1, Yong Lai1, Chao Wang1, Jiajia Xu, Yi Sun1 
TL;DR: The Haisugou Mo deposit is located in the northern part of the Xilamulun Mo-Cu metallogenic belt in northeastern China as discussed by the authors, which was emplaced into rocks of the Early Permian Qingfengshan Formation.

Journal ArticleDOI
Abstract: We present the first quantitative model of heat, mass and both major and trace element transport in a mush undergoing compaction that accounts for component transport and chemical reaction during melt migration and which is applicable to crustal systems. The model describes the phase behavior of binary systems (both eutectic and solid solution), with melt and solid compositions deter- mined from phase diagrams using the local temperature and bulk composition. Trace element concentration is also determined. The results demonstrate that component transport and chemical reaction generate compositional variation in both major and trace elements that is not captured by existing geochemical models. In particular, we find that, even for the simplest case of a homogenous, insulated column that is instantaneously melted then allowed to compact, component transport and reaction leads to spatial variations in major element composition that, in this case, produces melt that is more enriched in incompatible elements than predicted by batch melting. In deep crustal hot zones (DCHZ), created by the repeated intrusion of hot, mantle- derived magmas, buoyant melt migrating upwards accumulates in high porosity layers, but has a composition corresponding to only a small fraction of batch melting, because it has locally equilibrated with mush at low temperature; moreover, melt migration and chemical reaction in a layered protolith may lead to the rapid formation of high porosity melt layers at the interface between different rock compositions. In both of these cases, the melt in the high porosity layer(s) is less enriched in incompatible trace elements than predicted if it is assumed that melt with the same major element composition was produced by batch melting. This distinctive decoupling of major and trace element fractionation may be characteristic of magmas that originate in DCHZ. Application of the model to a number of crustal systems, including the Ivrea-Verbano zone, the Rum layered intrusion, and the Holyoke flood basalt, suggests that composi- tional heterogeneity can be explained by buoyancy-driven melt migration and compo- nent transport through a reactive crystalline mush.

Journal ArticleDOI
TL;DR: In this paper, the geochemistry and petrology of tonalitic to trondhjemitic samples (n = 85) from eight different plag- iogranite intrusions at the gabbro/sheeted dyke transition of the Troodos Ophiolite were studied in order to determine their petrogenetic relationship to the mafic plutonic section and the lava pile.
Abstract: The geochemistry and petrology of tonalitic to trondhjemitic samples (n = 85) from eight different plag- iogranite intrusions at the gabbro/sheeted dyke transition of the Troodos Ophiolite were studied in order to determine their petrogenetic relationship to the mafic plutonic section and the lava pile. The plagiogranitic rocks have higher SiO2 contents than the majority of the glasses of the Troodos lava pile, but lie on a continuation of the chemical trends defined by the extrusive rocks, indicating that the shallow intrusions generally represent crystallised magmas. We define three different groups of plagiogranites in the Troodos Ophiolite based on different incompatible element contents and ratios. The first and most common plagiog- ranite group has geochemical similarities to the tholeiitic lavas forming the lavas and sheeted dyke complex in the Troodos crust, implying that these magmas formed at a spreading axis. The second plagiogranite group occurs in one intrusion that is chemically related to late-stage and off-axis boninitic lavas and dykes. One intrusion next to the Arakapas fault zone consists of incompatible element- enriched plagiogranites which are unrelated to any known mafic crustal rocks. The similarities of incompatible element ratios between plagiogranites, lavas and mafic plutonic rocks, the continuous chemical trends defined by plagiogranites and mafic rocks, as well as incompatible element modelling results, all suggest that shallow frac- tional crystallisation is the dominant process responsible for formation of the felsic magmas.


Journal ArticleDOI
TL;DR: The Lapland metasedimentary granulites illustrate the behaviour of the LILE and rare metals during lower crustal metamorphism as discussed by the authors, showing distinct behaviours with respect to these elements.
Abstract: During granulite-facies metamorphism of metasedimentary rocks by the infiltration of carbonic fluids, the disappearance of hydrated minerals leads to the liberation of aqueous fluids. These fluids are strongly enriched in F and Cl, and a series of Large-Ion-Lithophile (LIL) elements and rare metals, resulting in their depletion in granulites. To sum up the fate of these elements, we focus on three domains representing different crustal levels and showing distinct behaviours with respect to these elements. The Lapland metasedimentary granulites illustrate the behaviour of the LILE and rare metals during lower crustal metamorphism. There is no change in Ba, moderate loss in Rb, and extreme depletion in Cs, Li, and Sn. F and Cl contents are also very low compared to the protoliths or average upper continental crust. Biotite and amphibole breakdown leads to the incorporation of their partitioning into a fluid or a melt. The Tranomaro metasomatized marbles recrystallizing under granulite-facies conditions represent a demonstrative example of fluid transfer from granulite-facies supracrustals to traps represented by regional scale skarns. Such fluids may be at the origin of the incompatible element enrichment detected in leucosomes of migmatites from St Malo in Brittany (France) and Black Hills in South Dakota. The northern French Massif Central provides us with an example of a potential association between incompatible element enrichment of granitic melts and granulite-facies metamorphism. U- and F-enriched fine-grained granites are emplaced along a crustal scale shear zone active during the emplacement within the St Sylvestre peraluminous leucogranitic complex. We propose that during granulite-facies metamorphism dominated by carbonic waves in a deep segment of the continental crust, these shear zones control: (i) the percolation of F-, LILE-, rare metal-rich fluids liberated primarily by the breakdown of biotite; (ii) the enhancement of partial melting by F-rich fluids at intermediate crustal levels with the generation of F-, LILE-, rare metal-rich granitic melts; (iii) their transfer through the crust with protracted fractionation facilitated by their low viscosity due to high F-Li contents; and finally (iv) their emplacement as rare metal intrusions at shallow crust levels.

Journal ArticleDOI
TL;DR: In this article, the authors studied oceanic mafic igneous rocks of the Mesozoic Banggongco-Nujang suture zone in western Tibet to constrain the tectonic evolution of these rocks and the region as a whole.
Abstract: We studied oceanic mafic igneous rocks of the Mesozoic Banggongco–Nujang suture zone in western Tibet to constrain the tectonic evolution of these rocks and the region as a whole. Two transects were accomplished. Seven basalt samples from the base of the Nadongshan transect (N1 basalts) have flat chondrite-normalized rare earth element (REE) and primitive-mantle-normalized trace element variation diagrams that are similar to MORB. Two basalt samples from the base of the Nadongshan transect (N1 basalts), ten gabbro samples from the middle of Nadongshan transect (N2 gabbros), four basalt samples from the bottom of Tanjiuxiama transect (T1 basalts), and four basalt samples from the top of the Tanjiuxiama transect (T2 basalts) are alkali basalts and have light rare earth element (LREE)-enriched chondrite-normalized REE patterns, and have primitive-mantle-normalized trace element variation diagrams that are enriched in highly incompatible elements, similar to OIB. LREE concentrations increase from N1 basalts t...

Journal ArticleDOI
15 Sep 2014-Lithos
TL;DR: In this article, the authors present new geochemical data on 26 mafic lavas from the Middle Atlas and Central Morocco volcanic provinces, including Miocene nephelinites and Pliocene-Quaternary (3.9-0.6Ma) basanites, and subalkaline basalts.

Journal ArticleDOI
TL;DR: In this article, the authors measured partition coefficients for 50 trace and minor elements in experimentally produced aqueous fluids, coexisting basanite melts, and peridotite minerals.
Abstract: Both silicate melts and aqueous fluids are thought to play critical roles in the chemical differentiation of the Earth's crust and mantle. Yet their relative effects are poorly constrained. We have addressed this issue by measuring partition coefficients for 50 trace and minor elements in experimentally produced aqueous fluids, coexisting basanite melts, and peridotite minerals. The experiments were conducted at 1.0–4.0 GPa and 950–1200°C in single capsules containing (either 40 or 50 wt %) H2O and trace element-enriched basanite glass. This allowed run products to be easily identified and analyzed by a combination of electron microprobe and LAM-ICP-MS. Fluid and melt compositions were reconstructed from mass balances and published solubility data for H2O in silicate melts. Relative to the basanite melt, the solutes from H2O-fluids are enriched in SiO2, alkalis, Ba, and Pb, but depleted in FeO, MgO, CaO, and REE. With increasing pressure, the mutual solubility of fluids and melts increases rapidly with complete miscibility between H2O and basanitic melts occurring between 3.0 and 4.0 GPa at 1100°C. Although LREE are favored over HREE in the fluid phase, they are less soluble than the HFSE (Nb, Ta, Zr, Hf, and Ti). Thus, the relative depletions of HFSE that are characteristic of arc magmas must be due to a residual phase that concentrates HFSE (e.g., rutile). Otherwise, H2O-fluids have the capacity to impart many of the geochemical characteristics that distinguish some rocks and melts from the deep mantle lithosphere (e.g., MARID and lamproites).

Journal ArticleDOI
Mengjing Xu1, Cai Li1, Wei Xu1, Chao-Ming Xie1, Peiyuan Hu1, Ming Wang1 
TL;DR: In this paper, the gabbros from new discovered Zhongcang ophiolitic melange are studied through petrology, whole-rock geochemistry, zircon U-Pb dating and Lu-Hf isotope.
Abstract: In order to investigate the evolution of Shiquanhe-Yongzhu-Jiali ophiolitic melange belt, the gabbros from new discovered Zhongcang ophiolitic melange are studied through petrology, whole-rock geochemistry, zircon U-Pb dating and Lu-Hf isotope. The gabbros investigated in this paper contain cumulate gabbro and gabbro dike, and they have undergone greenschist-amphibolite facies metamorphism. The chondrite normalized rare earth element (REE) patterns of most of these rocks show flat types with slightly light REE (LREE) depletion and the N-MORB normalized incompatible elements diagrams indicate depletion in high field strength elements (HFSE) (Nb, Ta) and enrichment in large ion lithophile elements (LILE). These gabbros have island arc and mid-ocean ridge basalt affinities, suggesting that they were originated in an oceanic back arc basin. Whole rock geochemistry and high positive ɛ Nd(t) values show that these gabbros were derived from ∼30% partial melting of a spinel lherzolite mantle, which was enriched by interaction with slab-derived fluids and melts from sediment. U-Pb analyses of zircons from cumulate gabbro yield a weighted mean age of 114.3±1.4 Ma. Based on our data and previous studies, we propose that an intra-oceanic subduction system and back arc basin operated in the Neo-Tethy Ocean of central Tibet during Middle Jurassic and Early Cretaceous, resembling modern active intra-oceanic subduction systems in the western Pacific.

Journal ArticleDOI
TL;DR: A large mafic dike swarm is radially distributed in southern Qiangtang as mentioned in this paper, and three typical samples were selected for geochronology, geochemistry, and Hf isotopic analysis.
Abstract: A large mafic dike swarm is radially distributed in southern Qiangtang. Three typical samples were selected for geochronology, geochemistry, and Hf isotopic analysis. Zircon U–Pb dating indicates that the three dikes formed at 291 ± 2, 292 ± 3, and 300 ± 2 Ma. Whole-rock compositions show that the southern Qiangtang mafic dikes are alkaline, Fe + Ti rich, and exhibit relative enrichment in light rare-earth elements. The ratios of incompatible elements are similar to those of oceanic island and Emeishan basalts. Geochemical diagrams show that the dikes erupted in an intraplate environment. Zircon Hf isotopic data suggest that magma that produced the mafic dikes was derived from a depleted mantle source. The geochemical characteristics of the dikes approximate that of eruption products of a brief period of mantle plume activity (300–280 Ma). According to eight geologic maps of Qiangtang, the mafic dikes crop out over an area of 150 km from north to south and 500 km from east to west, radiating outward from ...

Journal ArticleDOI
TL;DR: The Sarve-Abad ophiolitic complex consists of several tectonically dismembered ultramafic sequences as mentioned in this paper, which represent a portion of the southern Neo-Tethyan oceanic lithosphere, which originally existed between the Arabian and Sanandaj-Sirjan continental blocks.

Journal ArticleDOI
TL;DR: In this article, surface and sub-surface samples of early-Cretaceous Kerguelen mantle plume linked ultrapotassic intrusive rocks from previously unstudied localities of Raniganj and Jharia Gondwana sedimentary basins, Damodar Valley, eastern India, are presented.

Journal ArticleDOI
TL;DR: Zircon U-Pb dates, Sr-Nd-Hf isotopic compositions, and major element and trace element geochemistry were determined for the Baiyanghe granite porphyry in the Western Junggar, NW China as discussed by the authors.

Journal ArticleDOI
01 Nov 2014-Lithos
TL;DR: The high-Ti group is characterized by primitive mantle normalized OIB-like incompatible element patterns as mentioned in this paper, while the low-Ti groups exhibit lower Ti/Y ratios, higher ratios of Th/Nb and Th/La, more significant negative Nb-Ta anomalies and lower e Nd (t) values (− 7.26 to + 0.29).