scispace - formally typeset
Search or ask a question

Showing papers on "Integrase published in 2005"


Journal ArticleDOI
TL;DR: LEDGF is the first example of a cellular protein controlling the location of HIV integration in human cells and it is found that integration was less frequent in transcription units, lessrequent in genes regulated by LEDGF/p75 and more frequent in GC-rich DNA.
Abstract: HIV DNA integration is favored in active genes, but the underlying mechanism is unclear. Cellular lens epithelium-derived growth factor (LEDGF/p75) binds both chromosomal DNA and HIV integrase, and might therefore direct integration by a tethering interaction. We analyzed HIV integration in cells depleted for LEDGF/p75, and found that integration was (i) less frequent in transcription units, (ii) less frequent in genes regulated by LEDGF/p75 and (iii) more frequent in GC-rich DNA. LEDGF is thus the first example of a cellular protein controlling the location of HIV integration in human cells.

640 citations


Journal ArticleDOI
TL;DR: The main classes of lead compounds are also described, as well as the concept of interfacial inhibitors of protein-nucleic acid interactions that might apply to the clinically used strand-transfer inhibitors.
Abstract: HIV integrase is a rational target for treating HIV infection and preventing AIDS. It took approximately 12 years to develop clinically usable inhibitors of integrase, and Phase I clinical trials of integrase inhibitors have just begun. This review focuses on the molecular basis and rationale for developing integrase inhibitors. The main classes of lead compounds are also described, as well as the concept of interfacial inhibitors of protein-nucleic-acid interactions that might apply to the clinically used strand-transfer inhibitors.

617 citations


Journal ArticleDOI
TL;DR: The crystal structure of the dimeric catalytic core domain of HIV-1 IN complexed to the IN-binding domain of LEDGF is reported, showing the backbone conformation of residues 168-171 from one monomer and a hydrophobic patch that is primarily comprised of alpha-helices 1 and 3 of the second IN monomer.
Abstract: Integrase (IN) is an essential retroviral enzyme, and human transcriptional coactivator p75, which is also referred to as lens epithelium-derived growth factor (LEDGF), is the dominant cellular binding partner of HIV-1 IN. Here, we report the crystal structure of the dimeric catalytic core domain of HIV-1 IN complexed to the IN-binding domain of LEDGF. Previously identified LEDGF hotspot residues anchor the protein to both monomers at the IN dimer interface. The principal structural features of IN that are recognized by the host factor are the backbone conformation of residues 168–171 from one monomer and a hydrophobic patch that is primarily comprised of α-helices 1 and 3 of the second IN monomer. Inspection of diverse retroviral primary and secondary sequence elements helps to explain the apparent lentiviral tropism of the LEDGF-IN interaction. Because the lethal phenotypes of HIV-1 mutant viruses unable to interact with LEDGF indicate that IN function is highly sensitive to perturbations of the structure around the LEDGF-binding site, we propose that small molecule inhibitors of the protein–protein interaction might similarly disrupt HIV-1 replication.

400 citations


Journal ArticleDOI
TL;DR: HIV-1 virus harboring a single mutation that disrupts integrase-LEDGF/p75 interaction, resulted in defective HIV-1 replication and it is found that LEDGF/ p75 tethers HIV- 1 integrase to chromosomes and that this interaction may be important for the integration process and the replication of HIV-2.

253 citations


Journal ArticleDOI
TL;DR: The NMR structure of the integrase-binding domain (IBD) in LEDGF is determined and amino acid residues essential for the interaction with HIV-1 integrase are identified.
Abstract: Lens epithelium-derived growth factor (LEDGF)/p75 is the dominant binding partner of HIV-1 integrase (IN) in human cells. We have determined the NMR structure of the integrase-binding domain (IBD) in LEDGF and identified amino acid residues essential for the interaction. The IBD is a compact right-handed bundle composed of five alpha-helices. Based on folding topology, the IBD is structurally related to a diverse family of alpha-helical proteins that includes eukaryotic translation initiation factor eIF4G and karyopherin-beta. LEDGF residues essential for the interaction with IN were localized to interhelical loop regions of the bundle structure. Interaction-defective IN mutants were previously shown to cripple replication although they retained catalytic function. The initial structure determination of a host cell factor that tightly binds to a retroviral enzyme lays the groundwork for understanding enzyme-host interactions important for viral replication.

238 citations


Journal ArticleDOI
TL;DR: Results of NMR and of integrase inhibition assays on loop-modified sequences allowed us to propose a strategy toward the potential design of improved HIV-1 integrase inhibitors, and a model, based on molecular docking approaches, for positioning the 93del dimeric DNA quadruplex within a basic channel/canyon formed between subunits of a dimer of dimers of HIV- 1 integrase.
Abstract: We report on the NMR-based solution structure of the 93del d(GGGGTGGGAGGAGGGT) aptamer, a potent nanomolar inhibitor of HIV-1 integrase. This guanine-rich DNA sequence adopts an unusually stable dimeric quadruplex architecture in K+ solution. Within each 16-nt monomer subunit, which contains one A·(G·G·G·G) pentad sandwiched between two G·G·G·G tetrads, all G-stretches are parallel, and all guanines are anti with the exception of G1, which is syn. Dimer formation is achieved through mutual pairing of G1 of one monomer, with G2, G6, and G13 of the other monomer, to complete G·G·G·G tetrad formation. There are three single-nucleotide double-chain-reversal loops within each monomer fold, such that the first (T5) and third (A12) loops bridge three G-tetrad layers, whereas the second (A9) loop bridges two G-tetrad layers and participates in A·(G·G·G·G) pentad formation. Results of NMR and of integrase inhibition assays on loop-modified sequences allowed us to propose a strategy toward the potential design of improved HIV-1 integrase inhibitors. Finally, we propose a model, based on molecular docking approaches, for positioning the 93del dimeric DNA quadruplex within a basic channel/canyon formed between subunits of a dimer of dimers of HIV-1 integrase.

214 citations


Journal ArticleDOI
01 Sep 2005-Virology
TL;DR: Two N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamide analogs are identified as a novel class of human immunodeficiency virus type 1 (HIV-1) entry inhibitors that block the gp120-CD4 interaction, showing potent cell fusion and virus-cell fusion inhibitory activity at low micromolar levels.

211 citations


Journal ArticleDOI
TL;DR: LEDGF/p75 interacted with HIV-1, HIV-2, and feline immunodeficiency virus IN, but not with the IN of human T-cell lymphotropic virus type 2, Moloney murine leukemia virus, or Rous sarcoma virus, and these results strongly suggest that the interaction of LEDGF/ p75 with IN is specific to lentiviridae.

209 citations


Journal ArticleDOI
TL;DR: A review on the pharmacology and interactions of these agents with other drugs is presented, with emphasis on how these pharmacological interferences may improve the clinical use of antivirals, or how side effects due to these drugs may be managed better by taking them into account.
Abstract: Highly active antiretroviral therapy (HAART) dramatically changed the course of HIV infection. Currently, this therapy involves the use of agents from at least two distinct classes of antivirals: a protease inhibitor (PI) in combination with two nucleoside/nucleotide reverse transcriptase inhibitors (N(t)RTIs), or a non-nucleoside reverse transcriptase inhibitor (NNRTI) in combination with NRTIs. Recently, the third family of antivirals started to be used clinically, with the advent of enfuvirtide, the first fusion inhibitor (FI). Several pharmacological agents are available form these classes of antivirals, NRTIs, NNRTIs, PIs and FIs, which will be briefly reviewed here. Some more agents are in advanced clinical evaluation or have recently been approved (such as tenofovir, a NtRTI; atazanavir, a PI; tipranavir, another PI), mainly against drug-resistant viruses. Compounds inhibiting HIV integrase, the third enzyme of HIV, are also available ultimately, with several such derivatives in clinical trials (L-731, 988 and S-1360). Another approach to inhibit the growth of retroviruses, including HIV, targets the ejection of zinc ions from critical zinc finger viral proteins, which has as a consequence the inhibition of viral replication in the absence of mutations leading to drug resistance phenotypes. All steps in the process of HIV entry into the cell may be targeted by specific compounds that might be developed as novel types of antiretrovirals. Thus, inhibitors of the gp120 - CD4 interaction have been detected (zintevir, FP-21399 and BMS-378806 in clinical trials). Small molecule chemokine antagonists acting as HIV entry inhibitors also were described in the last period, which interact both with the CXCR4 coreceptor (such as AMD3100; AMD3465; ALX40-4C; T22, T134 and T140), or which are antagonist of the CCR5 coreceptor (TAK-779, TAK-220, SCH-C, SCH-D, E913, AK-602 and NSC 651016 in clinical trials), together with new types of fusion inhibitors possessing the same mechanism of action as enfuvirtide (such as T1249). Compounds interacting with Tat/Tar have also been detected which inhibit HIV replication in low micromolar range (EM2487, tamacrazine, CGP 64222 or CGA 137053 among others). Unexploited viral and cellular targets (such as the maturation process - with a first potent compound available, PA-457; the cellular proteins Tsg101, APOBEC3G, or the viral ones Vif, Rev or RNase H) are also presented, together with recently emerged approaches for eradication of HIV reservoirs. A review on the pharmacology and interactions of these agents with other drugs is presented here, with emphasis on how these pharmacological interferences may improve the clinical use of antivirals, or how side effects due to these drugs may be managed better by taking them into account.

207 citations


Journal ArticleDOI
TL;DR: The data suggest that the tetrameric IN bound to the viral DNA ends is the minimal complex involved in the concerted integration of both LTRs and should be the oligomeric form targeted by future inhibitors.
Abstract: The oligomeric state of active human immunodeficiency virus type 1 (HIV-1) integrase (IN) has not been clearly elucidated. We analyzed the activity of the different purified oligomeric forms of recombinant IN obtained after stabilization by platinum crosslinking. The crosslinked tetramer isolated by gel chromatography was able to catalyze the full-site integration of the two viral LTR ends into a target DNA in vitro, whereas the isolated dimeric form of the enzyme was involved in the processing and integration of only one viral end. Accurate concerted integration by IN tetramers was confirmed by cloning and sequencing. Kinetic studies of DNA-integrase complexes led us to propose a model explaining the formation of an active complex. Our data suggest that the tetrameric IN bound to the viral DNA ends is the minimal complex involved in the concerted integration of both LTRs and should be the oligomeric form targeted by future inhibitors.

195 citations


Journal ArticleDOI
TL;DR: Stable nuclear sequestration of a transcriptional regulator by chromatin during the nuclear-cytosolic mixing of cell division is revealed, which additionally enables stable tethering of IN to chromatin.
Abstract: To investigate the basis for the LEDGF/p75 dependence of HIV-1 integrase (IN) nuclear localization and chromatin association, we used cell lines made stably deficient in endogenous LEDGF/p75 by RNAi to analyze determinants of its location in cells and its ability to interact with IN. Deletion of C-terminal LEDGF/p75 residues 340-417 preserved nuclear and chromatin localization but abolished the interaction with IN and the tethering of IN to chromatin. Transfer of this IN-binding domain (IBD) was sufficient to confer HIV-1 IN interaction to GFP. HRP-2, the only other human protein with an identifiable IBD domain, was found to translocate IN to the nucleus of LEDGF/p75(–) cells. However, in contrast to LEDGF/p75, HRP-2 is not chromatin bound and does not tether IN to chromatin. A single classical nuclear localization signal (NLS) in the LEDGF/p75 N-terminal region (146RRGRKRKAEKQ156) was found by deletion mapping and was shown to be transferable to pyruvate kinase. Four central basic residues in the NLS are critical for its activity. Strikingly, however, stable expression studies with NLS(+/–) and IBD(+/–) mutants revealed that the NLS, although responsible for LEDGF/p75 nuclear import, is dispensable for stable, constitutive nuclear association of LEDGF/p75 and IN. Both wild-type LEDGF/p75 and NLS-mutant LEDGF/p75 remain entirely chromatin associated throughout the cell cycle, and each tethers IN to chromatin. Thus, these experiments reveal stable nuclear sequestration of a transcriptional regulator by chromatin during the nuclear-cytosolic mixing of cell division, which additionally enables stable tethering of IN to chromatin. LEDGF/p75 is a multidomain adaptor protein that interacts with the nuclear import apparatus, lentiviral IN proteins and chromatin by means of an NLS, an IBD and additional chromatin-interacting domains.

Journal ArticleDOI
TL;DR: It is shown that p300, a cellular acetyltransferase that regulates chromatin conformation through the acetylation of histones, also acetylates IN and controls its activity, the first demonstration that HIV‐1 IN activity is specifically regulated by post‐translational modification.
Abstract: Integration of HIV-1 into the human genome, which is catalyzed by the viral protein integrase (IN), preferentially occurs near transcriptionally active genes. Here we show that p300, a cellular acetyltransferase that regulates chromatin conformation through the acetylation of histones, also acetylates IN and controls its activity. We have found that p300 directly binds IN both in vitro and in the cells, as also specifically demonstrated by fluorescence resonance energy transfer technique analysis. This interaction results in the acetylation of three specific lysines (K264, K266, K273) in the carboxy-terminus of IN, a region that is required for DNA binding. Acetylation increases IN affinity to DNA, and promotes the DNA strand transfer activity of the protein. In the context of the viral replication cycle, point mutations in the IN acetylation sites abolish virus replication by specifically impairing its integration capacity. This is the first demonstration that HIV-1 IN activity is specifically regulated by post-translational modification.

Journal ArticleDOI
23 Jun 2005-Nature
TL;DR: The structures show how the simultaneous binding of two separate domains of λ-int to DNA facilitates synapsis and can specify the order of DNA strand cleavage and exchange, and shapes the recombination complex in a way that suggests how arm binding shifts the reaction equilibrium in favour of recombinant products.
Abstract: Site-specific DNA recombination is important for basic cellular functions including viral integration, control of gene expression, production of genetic diversity and segregation of newly replicated chromosomes, and is used by bacteriophage λ to integrate or excise its genome into and out of the host chromosome. λ recombination is carried out by the bacteriophage-encoded integrase protein (λ -int) together with accessory DNA sites and associated bending proteins that allow regulation in response to cell physiology. Here we report the crystal structures of λ -int in higher-order complexes with substrates and regulatory DNAs representing different intermediates along the reaction pathway. The structures show how the simultaneous binding of two separate domains of λ -int to DNA facilitates synapsis and can specify the order of DNA strand cleavage and exchange. An intertwined layer of amino-terminal domains bound to accessory (arm) DNAs shapes the recombination complex in a way that suggests how arm binding shifts the reaction equilibrium in favour of recombinant products.

Journal ArticleDOI
TL;DR: A large number of integration target site sequences from several retroviruses were examined, and it was found that a statistical palindromic consensus, centered on the virus-specific duplicated target site sequence, was a common feature at integration target sites for these retrovirus.
Abstract: Integration into the host genome is one of the hallmarks of the retroviral life cycle and is catalyzed by virus-encoded integrases. While integrase has strict sequence requirements for the viral DNA ends, target site sequences have been shown to be very diverse. We carefully examined a large number of integration target site sequences from several retroviruses, including human immunodeficiency virus type 1, simian immunodeficiency virus, murine leukemia virus, and avian sarcoma-leukosis virus, and found that a statistical palindromic consensus, centered on the virus-specific duplicated target site sequence, was a common feature at integration target sites for these retroviruses.

Journal ArticleDOI
TL;DR: Using a training set of diketo-like acid HIV-1 integrase (IN) strand-transfer inhibitors, a 3D pharmacophore model was derived having quantitative predictive ability in terms of activity, which guided the rational design of benzylindoles as new potent IN inhibitors, whose microwave-assisted synthesis and biological evaluation are reported.
Abstract: Using a training set of diketo-like acid HIV-1 integrase (IN) strand-transfer inhibitors, a 3D pharmacophore model was derived having quantitative predictive ability in terms of activity. The best statistical hypothesis consisted of four features (one hydrophobic aromatic region, two hydrogen-bond acceptors, and one hydrogen-bond donor) with r of 0.96. The resulting pharmacophore model guided the rational design of benzylindoles as new potent IN inhibitors, whose microwave-assisted synthesis and biological evaluation are reported.

Journal ArticleDOI
TL;DR: It is demonstrated that a novel and specific small molecule inhibitor of ATM kinase activity, KU-55933, is capable of suppressing the replication of both wild-type and drug-resistant HIV-1.
Abstract: Chemotherapy that is used to treat human immunodeficiency virus type-1 (HIV-1) infection focuses primarily on targeting virally encoded proteins. However, the combination of a short retroviral life cycle and high mutation rate leads to the selection of drug-resistant HIV-1 variants. One way to address this problem is to inhibit non-essential host cell proteins that are required for viral replication. Here we show that the activity of HIV-1 integrase stimulates an ataxia-telangiectasia-mutated (ATM)-dependent DNA damage response, and that a deficiency of this ATM kinase sensitizes cells to retrovirus-induced cell death. Consistent with these observations, we demonstrate that a novel and specific small molecule inhibitor of ATM kinase activity, KU-55933, is capable of suppressing the replication of both wild-type and drug-resistant HIV-1.

Journal ArticleDOI
TL;DR: An iterative polyketide synthase-peptide synthetase hybrid assembles the HIV-1 integrase inhibitory tetramic acid, equisetin, in the filamentous fungus Fusarium heterosporum.

Journal ArticleDOI
TL;DR: An HIV-based chimeric virus in which the entire IN protein of HIV was replaced by that of MLV was constructed, and it was shown that no combination of the virally encoded NLS is essential for the ability of HIV to infect non-dividing cells.
Abstract: Human immunodeficiency virus and other lentiviruses infect cells independent of cell cycle progression, but gammaretroviruses, such as the murine leukemia virus (MLV) require passage of cells through mitosis. This property is thought to be important for the ability of HIV to infect resting CD4+ T cells and terminally differentiated macrophages. Multiple and independent redundant nuclear localization signals encoded by HIV have been hypothesized to facilitate migration of viral genomes into the nucleus. The integrase (IN) protein of HIV is one of the HIV elements that targets to the nucleus; however, its role in nuclear entry of virus genomes has been difficult to describe because mutations in IN are pleiotropic. To investigate the importance of the HIV IN protein for infection of non-dividing cells, and to investigate whether or not IN was redundant with other viral signals for cell cycle-independent nuclear entry, we constructed an HIV-based chimeric virus in which the entire IN protein of HIV was replaced by that of MLV. This chimeric virus with a heterologous IN was infectious at a low level, and was able to integrate in an IN-dependent manner. Furthermore, this virus infected non-dividing cells as well as it infected dividing cells. Moreover, we used the chimeric HIV with MLV IN to further eliminate all of the other described nuclear localization signals from an HIV genome—matrix, IN, Viral Protein R, and the central polypurine tract—and show that no combination of the virally encoded NLS is essential for the ability of HIV to infect non-dividing cells.

Book ChapterDOI
TL;DR: Research into the mechanisms of retroviral integration site selection has shed light on the phenomena of insertional mutagenesis and viral latency.
Abstract: Integration of retroviral cDNA into the host cell chromosome is an essential step in its replication. This process is catalyzed by the retroviral integrase protein, which is conserved among retroviruses and retrotransposons. Integrase binds viral and host DNA in a complex, called the preintegration complex (PIC), with other viral and cellular proteins. While the PIC is capable of directing integration of the viral DNA into any chromosomal location, different retroviruses have clear preferences for integration in or near particular chromosomal features. The determinants of integration site selection are under investigation but may include retrovirus-specific interactions between integrase and tethering factors bound to the host cell chromosomes. Research into the mechanisms of retroviral integration site selection has shed light on the phenomena of insertional mutagenesis and viral latency.

Journal ArticleDOI
01 Jan 2005-Drugs
TL;DR: A multifaceted approach to ART, using combinations of inhibitors that target different steps of the viral life cycle, has the best potential for long-term control of HIV infection and the development of microbicides targeting HIV holds promise for reducing HIV transmission events.
Abstract: Current targets for antiretroviral therapy (ART) include the viral enzymes reverse transcriptase and protease. The use of a combination of inhibitors targeting these enzymes can reduce viral load for a prolonged period and delay disease progression. However, complications of ART, including the emergence of viruses resistant to current drugs, are driving the development of new antiretroviral agents targeting not only the reverse transcriptase and protease enzymes but novel targets as well. Indeed, enfuvirtide, an inhibitor targeting the viral envelope protein (Env) was recently approved for use in combination therapy in individuals not responding to current antiretroviral regimens. Emerging drug targets for ART include: (i) inhibitors that directly or indirectly target Env; (ii) the HIV enzyme integrase; and (iii) inhibitors of maturation that target the substrate of the protease enzyme. Env mediates entry of HIV into target cells via a multistep process that presents three distinct targets for inhibition by viral and cellular-specific agents. First, attachment of virions to the cell surface via nonspecific interactions and CD4 binding can be blocked by inhibitors that include cyanovirin-N, cyclotriazadisulfonamide analogues, PRO 2000, TNX 355 and PRO 542. In addition, BMS 806 can block CD4-induced conformational changes. Secondly, Env interactions with the co-receptor molecules can be targeted by CCR5 antagonists including SCH-D, maraviroc (UK 427857) and aplaviroc (GW 873140), and the CXCR4 antagonist AMD 070. Thirdly, fusion of viral and cellular membranes can be inhibited by peptides such as enfuvirtide and tifuvirtide (T 1249). The development of entry inhibitors has been rapid, with an increasing number entering clinical trials. Moreover, some entry inhibitors are also being evaluated as candidate microbicides to prevent mucosal transmission of HIV. The integrase enzyme facilitates the integration of viral DNA into the host cell genome. The uniqueness and specificity of this reaction makes integrase an attractive drug target. However, integrase inhibitors have been slow to reach clinical development, although recent contenders, including L 870810, show promise. Inhibitors that target viral maturation via a unique mode of action, such as PA 457, also have potential. In addition, recent advances in our understanding of cellular pathways involved in the life cycle of HIV have also identified novel targets that may have potential for future antiretroviral intervention, including interactions between the cellular proteins APOBEC3G and TSG101, and the viral proteins Vif and p6, respectively. In summary, a number of antiretroviral agents in development make HIV entry, integration and maturation emerging drug targets. A multifaceted approach to ART, using combinations of inhibitors that target different steps of the viral life cycle, has the best potential for long-term control of HIV infection. Furthermore, the development of microbicides targeting HIV holds promise for reducing HIV transmission events.

Journal ArticleDOI
TL;DR: It is shown that the coinjection of mRNA encoding φC31 integrase with plasmid DNA encoding the green fluorescent protein (GFP) can be used to generate transgenic X. laevis embryos.
Abstract: Bacteriophage φC31 encodes an integrase that can mediate the insertion of extrachromosomal DNA into genomic DNA. Here we show that the coinjection of mRNA encoding φC31 integrase with plasmid DNA encoding the green fluorescent protein (GFP) can be used to generate transgenic X. laevis embryos. Despite integration into the genome, appropriate promoter expression required modification of the reporter plasmid by bracketing the GFP reporter gene with tandem copies of the chicken β-globin 5′ HS4 insulator to relieve silencing owing to chromatin position effects. These experiments demonstrate that the integration of insulated gene sequences using φC31 integrase can be used to efficiently create transgenic embryos in X. laevis and may increase the practical use of φC31 integrase in other systems as well.

Journal ArticleDOI
TL;DR: Serial transplantation of integrase-corrected hepatocytes to Fah-/- recipients was successful, suggesting long-term viability of corrected cells and persistent gene expression through many rounds of cell division, and the stability of transgene expression, relatively high integration frequency, and significant site specificity that characterize the ϕC31 integration system suggest that it may have utility in many gene therapy settings.

Journal ArticleDOI
TL;DR: The results suggest that o-hydroxyl and/or keto-enol structures are important for both IN and PR inhibitory actions.

Journal ArticleDOI
TL;DR: It is found that blunt-ended DNA is a better substrate for the biologically relevant reaction of concerted integration of pairs of viral DNA ends, and differential effects of mutation of a residue in the C-terminal domain of integrase on concerted versus half-site integration implicate protein-protein interactions involving this domain as important for concerted integration.

Journal ArticleDOI
TL;DR: Subretinal injection of DNA followed by electroporation affords abundant transfer of plasmid DNA in rat RPE and suggests that phiC31 integration may be a simple and effective tool for nonviral long-term gene transfer in the eye.
Abstract: Purpose Gene therapy has shown promise in animal models of retinal disease, with the most success achieved to date with viral vectors used for gene delivery. Viral vectors, however, have side effects and limitations and are difficult to manufacture. The present study was conducted in an attempt to develop a novel system for long-term gene transfer in rat retinal pigment epithelium (RPE), by using nonviral transfection methods for gene transfer and the integrase from the bacteriophage phiC31 to confer long-term gene expression by means of genomic integration. Methods Efficient nonviral delivery of plasmid DNA to rat RPE in vivo was achieved by using subretinal injection of plasmid DNA, followed by in situ electroporation. Gene delivery was evaluated by analyzing enhanced green fluorescent protein (eGFP) expression in frozen sections. In subsequent experiments, a plasmid expressing luciferase, with or without a plasmid encoding the phiC31 integrase, was delivered to rat RPE. Luciferase expression was followed over time by using in vivo luciferase imaging. Results Subretinal injection followed by electroporation yielded abundant transgene expression in the rat RPE. Expression was strongest 48 hours after delivery. In the absence of phiC31 integrase, transgene expression declined to near-background levels within 3 to 4 weeks after treatment. By contrast, coinjection of the integrase plasmid led to long-term stable transgene expression throughout the 4.5-month test period. Eyes injected with phiC31 integrase showed approximately 85-fold higher long-term transgene expression in the retina than eyes without integrase. Conclusions Subretinal injection of DNA followed by electroporation affords abundant transfer of plasmid DNA in rat RPE. phiC31 integrase confers robust long-term transgene expression by mediating genomic integration of the transgene. These findings suggest that phiC31 integrase may be a simple and effective tool for nonviral long-term gene transfer in the eye.

Journal Article
TL;DR: This review summarizes the candidate cellular proteins involved in the HIV-1 integration process identified so far and discusses their potential roles during HIV- 1 replication.
Abstract: To achieve a productive infection, the reverse transcribed cDNA of the human immunodeficiency virus type 1 (HIV-1) has to be inserted in the host cell genome. The main protein required to accomplish this reaction is the virally encoded integrase. In vitro, the recombinant integrase is capable of catalyzing the two subsequent reactions of the integration process, namely the 3' processing followed by the strand transfer, without other viral and/or cellular proteins. However, a number of studies indicate that the in vivo integration process also involves cellular proteins, assisting the virus to integrate in the cellular genome. These cellular proteins can play a role during different steps of the integration process, including nuclear import, integrase catalysis, integration site selection and DNA gap repair. In this review we summarize the candidate cellular proteins involved in the HIV-1 integration process identified so far and discuss their potential roles during HIV-1 replication.

Journal ArticleDOI
TL;DR: The current understanding of how the Pol proteins, which are initially expressed as a Gag-Pol fusion product, are packaged into the assembling virion is summarized and the maturation process that results in the release of the viral enzymes in their active forms is discussed.
Abstract: The Pol protein of human immunodeficiency virus type 1 (HIV-1) harbours the viral enzymes critical for viral replication; protease (PR), reverse transcriptase (RT), and integrase (IN). PR, RT and IN are not functional in their monomeric forms and must come together as either dimers (PR), heterodimers (RT) or tetramers (IN) to be catalytically active. Our knowledge of the tertiary structures of the functional enzymes is well advanced, and substantial progress has recently been made towards understanding the precise steps leading from Pol protein synthesis through viral assembly to the release of active viral enzymes. This review will summarise our current understanding of how the Pol proteins, which are initially expressed as a Gag-Pol fusion product, are packaged into the assembling virion and discuss the maturation process that results in the release of the viral enzymes in their active forms. Our discussion will focus on the relationship between structure and function for each of the viral enzymes. This review will also provide an overview of the current status of inhibitors against the HIV-1 Pol proteins. Effective inhibitors of PR and RT are well established and we will discuss the next generation inhibitors of these enzymes as well recent investigations that have highlighted the potential of IN and RNase H as antiretroviral targets.

Journal ArticleDOI
TL;DR: This is the first reported use of S-1360 and its analogues as leads in developing a pharmacophore hypothesis for IN inhibition and for identification of new compounds with potent inhibition of this enzyme.
Abstract: HIV-1 Integrase (IN) is an essential enzyme for viral replication. The discovery of beta-diketo acids was crucial in the validation of IN as a legitimate target in drug discovery against HIV infection. In this study, we discovered a novel class of IN inhibitors using a 3D pharmacophore guided database search. We used S-1360 (1), the first IN inhibitor to undergo clinical trials, and three other analogues to develop a common feature pharmacophore hypothesis. Testing this four-featured pharmacophore against a multiconformational database of 150,000 structurally diverse small molecules yielded 1,700 compounds that satisfied the 3D query. Subsequently, all 1,700 compounds were docked into the active site of IN. On the basis of docking scores, Lipinski's rule-of-five, and structural novelty, 110 compounds were selected for biological screening. We found that compounds that contain both salicylic acid and a 2-thioxo-4-thiazolidinone (rhodanine) group (e.g. 5-13) showed significant inhibitory potency against IN, while the presence of either salicylic acid or a rhodanine group alone did not. Although some of the compounds containing only a salicylic acid showed inhibitory potency against IN, none of the compounds containing only rhodanine exhibited considerable potency. Of the 52 compounds reported in this study, 11 compounds (5, 6, 8, 10-13, 32-33, 51, and 53) inhibited 3'-processing or strand transfer activities of IN with IC(50) < or = 25 microM. This is the first reported use of S-1360 and its analogues as leads in developing a pharmacophore hypothesis for IN inhibition and for identification of new compounds with potent inhibition of this enzyme.

Journal Article
TL;DR: The structures show how the simultaneous binding of two separate domains of lambda-int to DNA facilitates synapsis and can specify the order of DNA strand cleavage and exchange, and shapes the recombination complex in a way that suggests how arm binding shifts the reaction equilibrium in favour of recombinant products.
Abstract: Site-specific DNA recombination is important for basic cellular functions including viral integration, control of gene expression, production of genetic diversity and segregation of newly replicated chromosomes, and is used by bacteriophage lambda to integrate or excise its genome into and out of the host chromosome. lambda recombination is carried out by the bacteriophage-encoded integrase protein (lambda-int) together with accessory DNA sites and associated bending proteins that allow regulation in response to cell physiology. Here we report the crystal structures of lambda-int in higher-order complexes with substrates and regulatory DNAs representing different intermediates along the reaction pathway. The structures show how the simultaneous binding of two separate domains of lambda-int to DNA facilitates synapsis and can specify the order of DNA strand cleavage and exchange. An intertwined layer of amino-terminal domains bound to accessory (arm) DNAs shapes the recombination complex in a way that suggests how arm binding shifts the reaction equilibrium in favour of recombinant products.

Journal ArticleDOI
TL;DR: Using Vpr-IN complementation, it is determined that the CCD protomer that catalyzes integration also preferentially binds to viral and target DNA.
Abstract: The catalytic core domain (CCD) of human immunodeficiency virus type 1 (HIV-1) integrase (IN) harbors the enzyme active site and binds viral and chromosomal DNA during integration. Thirty-five CCD mutant viruses were constructed, paying particular attention to conserved residues in the Phe139-Gln146 flexible loop and abutting Ser147-Val165 amphipathic alpha helix that were implicated from previous in vitro work as important for DNA binding. Defective viruses were typed as class I mutants (specifically blocked at integration) or pleiotropic class II mutants (additional particle assembly and/or reverse transcription defects). Whereas HIV-1P145A and HIV-1Q146K grew like the wild type, HIV-1N144K and HIV-1Q148L were class I mutants, reinforcing previous results that Gln-148 is important for DNA binding and uncovering for the first time an important role for Asn-144 in integration. HIV-1Q62K, HIV-1H67E, HIV-1N120K, and HIV-1N155K were also class I mutants, supporting findings that Gln-62 and Asn-120 interact with viral and target DNA, respectively, and suggesting similar integration-specific roles for His-67 and Asn-155. Although results from complementation analyses established that IN functions as a multimer, the interplay between active-site and CCD DNA binding functions was unknown. By using Vpr-IN complementation, we determined that the CCD protomer that catalyzes integration also preferentially binds to viral and target DNA. We additionally characterized E138K as an intramolecular suppressor of Gln-62 mutant virus and IN. The results of these analyses highlight conserved CCD residues that are important for HIV-1 replication and integration and define the relationship between DNA binding and catalysis that occurs during integration in vivo.