scispace - formally typeset
Search or ask a question

Showing papers on "Ixodes ricinus published in 2021"


Journal ArticleDOI
TL;DR: In this paper, the authors discuss the most important outstanding questions against the backdrop of the current state of knowledge of Ixodes ricinus, particularly in the context of vaccination, and the role of the microbiome in pathogen transmission.

32 citations


Journal ArticleDOI
TL;DR: In this article, the Ixodes ricinus microbiota and its temporal dynamics and interactions were studied using high-throughput sequencing, and the authors found strong relationships between the presence of specific pathogens and the structure of the I. ricinus microbial community.
Abstract: Background Ticks transmit pathogens of medical and veterinary importance and are an increasing threat to human and animal health. Assessing disease risk and developing new control strategies requires identifying members of the tick-borne microbiota as well as their temporal dynamics and interactions. Methods Using high-throughput sequencing, we studied the Ixodes ricinus microbiota and its temporal dynamics. 371 nymphs were monthly collected during three consecutive years in a peri-urban forest. After a Poisson lognormal model was adjusted to our data set, a principal component analysis, sparse network reconstruction, and differential analysis allowed us to assess seasonal and monthly variability of I. ricinus microbiota and interactions within this community. Results Around 75% of the detected sequences belonged to five genera known to be maternally inherited bacteria in arthropods and to potentially circulate in ticks: Candidatus Midichloria, Rickettsia , Spiroplasma , Arsenophonus and Wolbachia . The structure of the I. ricinus microbiota varied over time with interannual recurrence and seemed to be mainly driven by OTUs commonly found in the environment. Total network analysis revealed a majority of positive partial correlations. We identified strong relationships between OTUs belonging to Wolbachia and Arsenophonus , evidence for the presence of the parasitoid wasp Ixodiphagus hookeri in ticks. Other associations were observed between the tick symbiont Candidatus Midichloria and pathogens belonging to Rickettsia . Finally, more specific network analyses were performed on TBP-infected samples and suggested that the presence of pathogens belonging to the genera Borrelia , Anaplasma and Rickettsia may disrupt microbial interactions in I. ricinus . Conclusions We identified the I. ricinus microbiota and documented marked shifts in tick microbiota dynamics over time. Statistically, we showed strong relationships between the presence of specific pathogens and the structure of the I. ricinus microbiota. We detected close links between some tick symbionts and the potential presence of either pathogenic Rickettsia or a parasitoid in ticks. These new findings pave the way for the development of new strategies for the control of ticks and tick-borne diseases.

29 citations


Journal ArticleDOI
TL;DR: In this article, the presence of Rickettsia spp., Coxiella burnetii and Anaplasma phagocytophilum in reptiles, their ectoparasites and in questing ticks collected in a nature preserve park in southern Italy, as well as in a peri-urban area in another region.
Abstract: We assessed the presence of Rickettsia spp., Coxiella burnetii and Anaplasma phagocytophilum in reptiles, their ectoparasites and in questing ticks collected in a nature preserve park in southern Italy, as well as in a peri-urban area in another region. We also investigated the exposure to these pathogens in forestry workers, farmers and livestock breeders living or working in the nature preserve park given the report of anecdotal cases of spotted fever rickettsioses. Rickettsia spp. were molecularly detected in Podarcis muralis and Podarcis siculus lizards (i.e., 3.1%), in Ixodes ricinus (up to 87.5%) and in Neotrombicula autumnalis (up to 8.3%) collected from them as well as in I. ricinus collected from the environment (up to 28.4%). Rickettsia monacensis was the most prevalent species followed by Rickettsia helvetica. An undescribed member of the family Anaplasmataceae was detected in 2.4% and 0.8% of the reptiles and ectoparasites, respectively. Sera from human subjects (n = 50) were serologically screened and antibodies to Rickettsia spp. (n = 4; 8%), C. burnetti (n = 8; 16%) and A. phagocytophilum (n = 11; 22%) were detected. Two ticks collected from two forestry workers were positive for spotted fever group (SFG) rickettsiae. Ixodes ricinus is involved in the transmission of SFG rickettsiae (R. monacensis and R. helvetica) in southern Europe and lizards could play a role in the sylvatic cycle of R. monacensis, as amplifying hosts. Meanwhile, N. autumnalis could be involved in the enzootic cycle of some SFG rickettsiae among these animals. People living or working in the southern Italian nature preserve park investigated are exposed to SFG rickettsiae, C. burnetii and A. phagocytophilum.

28 citations


Journal ArticleDOI
TL;DR: An updated and increased compilation of georeferenced tick locations in Germany is presented in this paper, which includes two species of Argasidae in the genera Argas and Carios and 19 species of Ixodidae (Ixodes, Dermacentor, Haemaphysalis, and Ixodes) altogether 21 species.
Abstract: An updated and increased compilation of georeferenced tick locations in Germany is presented here. This data collection extends the dataset published some years ago by another 1448 new tick locations, 900 locations of which were digitized from literature and 548 locations are published here for the first time. This means that a total of 3492 georeferenced tick locations is now available for Germany. The tick fauna of Germany includes two species of Argasidae in the genera Argas and Carios and 19 species of Ixodidae in the genera Dermacentor, Haemaphysalis, and Ixodes, altogether 21 tick species. In addition, three species of Ixodidae in the genera Hyalomma (each spring imported by migratory birds) and Rhipicephalus (occasionally imported by dogs returning from abroad with their owners) are included in the tick atlas. Of these, the georeferenced locations of 23 tick species are depicted in maps. The occurrence of the one remaining tick species, the recently described Ixodes inopinatus, is given at the level of the federal states. The most common and widespread tick species is Ixodes ricinus, with records in all 16 federal states. With the exception of Hamburg, Dermacentor reticulatus was also found in all federal states. The occurrence of the ixodid ticks Ixodes canisuga, Ixodes frontalis, Ixodes hexagonus and I. inopinatus were documented in at least 11 federal states each. The two mentioned argasid tick species were also documented in numerous federal states, the pigeon tick Argas reflexus in 11 and the bat tick Carios vespertilionis in seven federal states. The atlas of ticks in Germany and the underlying digital dataset in the supplement can be used to improve global tick maps or to study the effects of climate change and habitat alteration on the distribution of tick species.

26 citations


Journal ArticleDOI
TL;DR: It is concluded that humans bitten by I. ricinus in Serbia are exposed to a diverse array of TBPs with clinical impact in the Serbian cohort studied.

23 citations


Journal ArticleDOI
TL;DR: It is reported for the first time the presence of TBEV in I. ricinus from northern Africa, andPhylogenetic analysis showed that the Tunisian TBEv strain belongs to the European lineage.

20 citations


Journal ArticleDOI
TL;DR: In this article, a prospective study was conducted to assess the risk for tickborne infections after a tick bite, and a total of 489 persons bitten by 1,295 ticks were assessed for occurrence of infections with Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Rickettsia spl., Babesia spp., Candidatus Neoehrlichia mikurensis, and relapsing fever borreliae.
Abstract: The aim of this prospective study was to assess the risk for tickborne infections after a tick bite. A total of 489 persons bitten by 1,295 ticks were assessed for occurrence of infections with Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Rickettsia spp., Babesia spp., Candidatus Neoehrlichia mikurensis, and relapsing fever borreliae. B. burgdorferi s.l. infection was found in 25 (5.1%) participants, of whom 15 had erythema migrans. Eleven (2.3%) participants were positive by PCR for Candidatus N. mikurensis. One asymptomatic participant infected with B. miyamotoi was identified. Full engorgement of the tick (odds ratio 9.52) and confirmation of B. burgdorferi s.l. in the tick by PCR (odds ratio 4.39) increased the risk for infection. Rickettsia helvetica was highly abundant in ticks but not pathogenic to humans. Knowledge about the outcome of tick bites is crucial because infections with emerging pathogens might be underestimated because of limited laboratory facilities.

20 citations


Journal ArticleDOI
TL;DR: This primary care-based trial provides evidence that a single dose of doxycycline can prevent the development of Lyme borreliosis after an Ixodes ricinus tick bite.

18 citations


Journal ArticleDOI
11 Mar 2021-Viruses
TL;DR: In this paper, the authors detected RNA of the Alongshan virus in 44 individuals or pools of various tick species in eight regions of Russia and found amino acid signatures specific to the I. persulcatus and I. ricinus groups.
Abstract: The genus Flavivirus includes related, unclassified segmented flavi-like viruses, two segments of which have homology with flavivirus RNA-dependent RNA polymerase NS5 and RNA helicase-protease NS3. This group includes such viruses as Jingmen tick virus, Alongshan virus, Yanggou tick virus and others. We detected the Yanggou tick virus in Dermacentor nuttalli and Dermacentor marginatus ticks in two neighbouring regions of Russia. The virus prevalence ranged from 0.5% to 8.0%. We detected RNA of the Alongshan virus in 44 individuals or pools of various tick species in eight regions of Russia. The virus prevalence ranged from 0.6% to 7.8%. We demonstrated the successful replication of the Yanggou tick virus and Alongshan virus in IRE/CTVM19 and HAE/CTVM8 tick cell lines without a cytopathic effect. According to the phylogenetic analysis, we divided the Alongshan virus into two groups: an Ixodes persulcatus group and an Ixodes ricinus group. In addition, the I. persulcatus group can be divided into European and Asian subgroups. We found amino acid signatures specific to the I. ricinus and I. persulcatus groups and also distinguished between the European and Asian subgroups of the I. persulcatus group.

17 citations


Journal ArticleDOI
TL;DR: In this article, the authors used Reverse Line Blotting (RLB) and qPCR detection of Babesia species to test 25,849 questing I. ricinus ticks for co-infections with other tick borne pathogens.
Abstract: Human babesiosis in Europe has been attributed to infection with Babesia divergens and, to a lesser extent, with Babesia venatorum and Babesia microti, which are all transmitted to humans through a bite of Ixodes ricinus. These Babesia species circulate in the Netherlands, but autochthonous human babesiosis cases have not been reported so far. To gain more insight into the natural sources of these Babesia species, their presence in reservoir hosts and in I. ricinus was examined. Moreover, part of the ticks were tested for co-infections with other tick borne pathogens. In a cross-sectional study, qPCR-detection was used to determine the presence of Babesia species in 4611 tissue samples from 27 mammalian species and 13 bird species. Reverse line blotting (RLB) and qPCR detection of Babesia species were used to test 25,849 questing I. ricinus. Fragments of the 18S rDNA and cytochrome c oxidase subunit I (COI) gene from PCR-positive isolates were sequenced for confirmation and species identification and species-specific PCR reactions were performed on samples with suspected mixed infections. Babesia microti was found in two widespread rodent species: Myodes glareolus and Apodemus sylvaticus, whereas B. divergens was detected in the geographically restricted Cervus elaphus and Bison bonasus, and occasionally in free-ranging Ovis aries. B. venatorum was detected in the ubiquitous Capreolus capreolus, and occasionally in free-ranging O. aries. Species-specific PCR revealed co-infections in C. capreolus and C. elaphus, resulting in higher prevalence of B. venatorum and B. divergens than disclosed by qPCR detection, followed by 18S rDNA and COI sequencing. The non-zoonotic Babesia species found were Babesia capreoli, Babesia vulpes, Babesia sp. deer clade, and badger-associated Babesia species. The infection rate of zoonotic Babesia species in questing I. ricinus ticks was higher for Babesia clade I (2.6%) than Babesia clade X (1.9%). Co-infection of B. microti with Borrelia burgdorferi sensu lato and Neoehrlichia mikurensis in questing nymphs occurred more than expected, which reflects their mutual reservoir hosts, and suggests the possibility of co-transmission of these three pathogens to humans during a tick bite. The ubiquitous spread and abundance of B. microti and B. venatorum in their reservoir hosts and questing ticks imply some level of human exposure through tick bites. The restricted distribution of the wild reservoir hosts for B. divergens and its low infection rate in ticks might contribute to the absence of reported autochthonous cases of human babesiosis in the Netherlands.

17 citations


Journal ArticleDOI
TL;DR: Kodama et al. as mentioned in this paper identified a novel orthonairovirus, designated Yezo virus (YEZV), from two patients showing acute febrile illness with thrombocytopenia and leukopenia after tick bite in Hokkaido, Japan, in 2019 and 2020, respectively.
Abstract: The increasing burden of tick-borne orthonairovirus infections, such as Crimean-Congo hemorrhagic fever, is becoming a global concern for public health. In the present study, we identify a novel orthonairovirus, designated Yezo virus (YEZV), from two patients showing acute febrile illness with thrombocytopenia and leukopenia after tick bite in Hokkaido, Japan, in 2019 and 2020, respectively. YEZV is phylogenetically grouped with Sulina virus detected in Ixodes ricinus ticks in Romania. YEZV infection has been confirmed in seven patients from 2014–2020, four of whom were co-infected with Borrelia spp. Antibodies to YEZV are found in wild deer and raccoons, and YEZV RNAs have been detected in ticks from Hokkaido. In this work, we demonstrate that YEZV is highly likely to be the causative pathogen of febrile illness, representing the first report of an endemic infection associated with an orthonairovirus potentially transmitted by ticks in Japan. Here, Kodama et al. describe the discovery, isolation and characterization of a novel tick-borne orthonairovirus, designated Yezo virus (YEZV), from patients with an acute febrile illness in Japan. Serological testing of wildlife and molecular screening of ticks suggest an endemic circulation of YEZV in Japan.

Journal ArticleDOI
TL;DR: The presence of these two pathogens that are primarily circulated by I. ricinus confirms the local participation of wild boars in the host spectrum of this tick and warrants experimental studies to address wild boar as a reservoir of zoonotic haplotypes of A. phagocytophilum.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated infection rates of B. burgdorferi s.l. in 24 field sites in England and Wales, focussing on protected recreational areas in National Parks (NPs) and Areas of Outstanding Natural Beauty (AONBs).
Abstract: Understanding the variation in Borrelia burgdorferi s.l. infection rates in Ixodes ricinus ticks is important for assessing the potential for Lyme borreliosis transmission. This study aimed to investigate infection rates of B. burgdorferi s.l. bacteria in I. ricinus across 24 field sites in England and Wales, focussing on protected recreational areas in National Parks (NPs) and Areas of Outstanding Natural Beauty (AONBs), to provide comparable data across multiple years to assess spatio-temporal changes in B. burgdorferi s.l. infection. Working with park rangers, questing ticks were collected each spring from 2014 to 2019. A subset of ticks, 4104 nymphs, were analysed using a pan-Borrelia qPCR assay, as well as a Borrelia miyamotoi-specific qPCR, and sequenced to determine Borrelia burgdorferi s.l. genospecies. Site-specific B. burgdorferi s.l. infection rates in I. ricinus nymphs varied from 0% to 24%, with overall infection rates ranging from 2.5% to 5.1% across the years. Genospecies composition of sequenced samples was 62.5% B. garinii, 20.3% B. valaisiana and 17.2% B. afzelii. Borrelia miyamotoi was detected in 0.2% of ticks. This study increases our knowledge on B. burgdorferi s.l.. infection in areas used by the public for outdoor activity across England and Wales, highlighting the spatial and temporal variability which can impact the changing risk to humans from infected tick bites.

Journal ArticleDOI
TL;DR: Nymphs generally showed lower rates of resource depletion than adults at all temperatures and the lower thresholds for metabolic activity were estimated to be between −10 and −5 °C, which is considered to be an adaptation to increase survival during the extended inter-feed intervals.
Abstract: Understanding the effects of temperature on the metabolic activity and the rate of depletion of energy reserves by Ixodes ricinus can represent an important contribution to explaining patterns of tick activity and the likely impacts of environmental change on tick and tick-borne disease risk. Here, a cohort of I. ricinus nymphs, males, and females was collected and placed into incubators at temperatures of between 5 and 30 °C. The protein, carbohydrate, total lipid, neutral lipid, and glycogen levels were measured for nymphs for up to 70 days and adults up to 42 days. In nymphs, at day 0, glycogen was the most abundant metabolite followed by carbohydrate, with relatively low concentrations of protein and lipids. For males, the concentrations of different metabolites were relatively similar. In contrast, for females, concentrations of glycogen and carbohydrate were relatively low compared to those of protein and neutral lipids. Significant exponential declines in metabolite concentrations of all metabolites were detected over time for all life-cycle stages and at all temperatures. Nymphs generally showed lower rates of resource depletion than adults at all temperatures. The lower thresholds for metabolic activity were estimated to be between −10 and −5 °C. The Q10 values, which describe the thermal sensitivity of metabolic rate, were estimated to be relatively low (1.5 for nymphs, 1.71 for males, and 1.63 for females) compared to insects where they are typically around 2.5 (range: 1.5–3), and this is considered to be an adaptation to increase survival during the extended inter-feed intervals.

Journal ArticleDOI
TL;DR: The effects of current and future global warming on the distribution and activity of the primary ixodid vectors of human babesiosis (caused by Babesia divergens, B. venatorum and B. microti) are discussed in this article.
Abstract: The effects of current and future global warming on the distribution and activity of the primary ixodid vectors of human babesiosis (caused by Babesia divergens, B. venatorum and B. microti) are discussed. There is clear evidence that the distributions of both Ixodes ricinus, the vector in Europe, and I. scapularis in North America have been impacted by the changing climate, with increasing temperatures resulting in the northwards expansion of tick populations and the occurrence of I. ricinus at higher altitudes. Ixodes persulcatus, which replaces I. ricinus in Eurasia and temperate Asia, is presumed to be the babesiosis vector in China and Japan, but this tick species has not yet been confirmed as the vector of either human or animal babesiosis. There is no definite evidence, as yet, of global warming having an effect on the occurrence of human babesiosis, but models suggest that it is only a matter of time before cases occur further north than they do at present.

Journal ArticleDOI
TL;DR: In this paper, the authors used a One Health approach to study the possible circulation of TBPs in ticks, animals and humans within a rural household in the foothills of the Fruska Gora mountain, northern Serbia.

Journal ArticleDOI
TL;DR: In this paper, DNA was isolated from 151 questing ticks: Ixodes ricinus, Haemaphysalis punctata, Dermacentor reticulatus, Deneracentor marginatus, Hexagonus, H. hexagonus and H. punctata.
Abstract: Despite the increasingly recognized eco-epidemiological importance of ticks as vectors for numerous zoonotic pathogens in urban areas, data regarding the pathogen diversity and co-infection rates in ticks and wildlife hosts in urban and peri-urban Romania are scanty. We aimed to establish the risk of human exposure to co-infected ticks in Cluj-Napoca, a major city in Romania. DNA was isolated from 151 questing ticks: Ixodes ricinus (n = 95), Haemaphysalis punctata (n = 53), Dermacentor reticulatus (n = 2), and Dermacentor marginatus (n = 1); 222 engorged ticks: I. ricinus (n = 164), I. hexagonus (n = 36), H. punctata (n = 16), H. concinna (n = 6), and 70 tissue samples collected from wildlife hosts during 2018 in five urban, and two peri-urban sites. Using a pre-designed Fluidigm real-time PCR dynamic array, all DNA samples were individually screened for the presence of 44 vector-borne pathogens. Subsequently, conventional PCRs were performed for a selection of samples to allow validation and sequencing. In total, 15 pathogens were identified to species and 6 to genus level. In questing ticks, single infections were more common than co-infections. Seven Borrelia spp. were detected in questing I. ricinus, and three in H. punctata ticks. An overall high prevalence 26.35% (95% CI: 19.46-34.22) and diversity of Borrelia burgdorferi sensu lato was seen in urban questing ticks. Other pathogens of the order Rickettsiales were present with variable prevalence. Co-infections occurred in 27.4% (95% CI: 18.72-37.48) of all infected questing ticks. In engorged ticks the overall Bo. burgdorferi sensu lato prevalence was 35.6% (95% CI: 29.29-42.27), with five species present. Pathogens of the order Rickettsiales were also frequently detected. We report for the first time in Romania the presence of Rickettsia aeschlimannii and Rickettsia felis. Overall, from the infected engorged ticks, 69.2% showcased co-infections. In Ixodes spp., dual co-infections, namely Borrelia spp. and Anaplasma phagocytophilum, and Rickettsia helvetica and A. phagocytophilum were the most prevalent. Given the outcome, we underline the need to establish proper tick-surveillance programs in cities and include co-infections in the management plan of tick-borne diseases in Romania.

Journal ArticleDOI
TL;DR: In this article, the authors quantified the tick load and spleen samples from hunted fallow deer (Dama dama, n´='131', moose (Alces alces, n'='15), red deer (Cervus elaphus, n''='61), roe deer (Capreolus capreolUS, n`='30) and wild boar (Sus scrofa, n�='87) in south-central Sweden.
Abstract: Several ungulate species are feeding and propagation hosts for the tick Ixodes ricinus as well as hosts to a wide range of zoonotic pathogens. Here, we focus on Anaplasma phagocytophilum and Borrelia burgdorferi (s.l.), two important pathogens for which ungulates are amplifying and dilution hosts, respectively. Ungulate management is one of the main tools to mitigate human health risks associated with these tick-borne pathogens. Across Europe, different species of ungulates are expanding their ranges and increasing in numbers. It is currently unclear if and how the relative contribution to the life-cycle of I. ricinus and the transmission cycles of tick-borne pathogens differ among these species. In this study, we aimed to identify these relative contributions for five European ungulate species. We quantified the tick load and collected ticks and spleen samples from hunted fallow deer (Dama dama, n = 131), moose (Alces alces, n = 15), red deer (Cervus elaphus, n = 61), roe deer (Capreolus capreolus, n = 30) and wild boar (Sus scrofa, n = 87) in south-central Sweden. We investigated the presence of tick-borne pathogens in ticks and spleen samples using real-time PCR. We determined if ungulate species differed in tick load (prevalence and intensity) and in infection prevalence in their tissue as well as in the ticks feeding on them. Wild boar hosted fewer adult female ticks than any of the deer species, indicating that deer are more important as propagation hosts. Among the deer species, moose had the lowest number of female ticks, while there was no difference among the other deer species. Given the low number of infected nymphs, the relative contribution of all ungulate species to the transmission of B. burgdorferi (s.l.) was low. Fallow deer, red deer and roe deer contributed more to the transmission of A. phagocytophilum than wild boar. The ungulate species clearly differed in their role as a propagation host and in the transmission of B. burgdorferi and A. phagocytophilum. This study provides crucial information for ungulate management as a tool to mitigate zoonotic disease risk and argues for adapting management approaches to the local ungulate species composition and the pathogen(s) of concern.

Journal ArticleDOI
22 Apr 2021
TL;DR: In this article, the authors compared the vector competence of Ixodes ricinus for three Bartonella species: B. henselae, B. grahamii, and B. schoenbuchensis.
Abstract: Bartonellae are facultative intracellular alpha-proteobacteria often transmitted by arthropods. Ixodes ricinus is the most important vector for arthropod-borne pathogens in Europe. However, its vector competence for Bartonella spp. is still unclear. This study aimed to experimentally compare its vector competence for three Bartonella species: B. henselae, B. grahamii, and B. schoenbuchensis. A total of 1333 ticks (1021 nymphs and 312 adults) were separated into four groups, one for each pathogen and a negative control group. Ticks were fed artificially with bovine blood spiked with the respective Bartonella species. DNA was extracted from selected ticks to verify Bartonella-infection by PCR. DNA of Bartonella spp. was detected in 34% of nymphs and females after feeding. The best engorgement results were obtained by ticks fed with B. henselae-spiked blood (65.3%) and B. schoenbuchensis (61.6%). Significantly more nymphs fed on infected blood (37.3%) molted into adults compared to the control group (11.4%). Bartonella DNA was found in 22% of eggs laid by previously infected females and in 8.6% of adults molted from infected nymphs. The transovarial and transstadial transmission of bartonellae suggest that I. ricinus could be a potential vector for three bacteria.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the altitudinal distribution of the exophilic Ixodes ricinus and endophilic i.a. trianguliceps on two mountain slopes in Norway by assessing larval infestation rates on bank voles (Myodes glareolus).
Abstract: During the last decades a northward and upward range shift has been observed among many organisms across different taxa. In the northern hemisphere, ticks have been observed to have increased their latitudinal and altitudinal range limit. However, the elevational expansion at its northern distribution range remains largely unstudied. In this study we investigated the altitudinal distribution of the exophilic Ixodes ricinus and endophilic I. trianguliceps on two mountain slopes in Norway by assessing larval infestation rates on bank voles (Myodes glareolus). During 2017 and 2018, 1325 bank voles were captured during the spring, summer and autumn at ten trapping stations ranging from 100 m to 1000 m.a.s.l. in two study areas in southern Norway. We used generalized logistic regression models to estimate the prevalence of infestation of both tick species along gradients of altitude, considering study area, collection year and season, temperature, humidity and altitude interactions as extrinsic variables, and host body mass and sex as intrinsic predictor variables. We found that both I. ricinus and I. trianguliceps infested bank voles at altitudes up to 1000 m.a.s.l., which is a substantial increase in altitude compared to previous findings for I. ricinus in this region. The infestation rates declined more rapidly with increasing altitude for I. ricinus compared to I. trianguliceps, indicating that the endophilic ecology of I. trianguliceps may provide shelter from limiting factors tied to altitude. Seasonal effects limited the occurrence of I. ricinus during autumn, but I. trianguliceps was found to infest rodents at all altitudes during all seasons of both years. This study provides new insights into the altitudinal distribution of two tick species at their northern distribution range, one with the potential to transmit zoonotic pathogens to both humans and livestock. With warming temperatures predicted to increase, and especially so in the northern regions, the risk of tick-borne infections is likely to become a concern at increasingly higher altitudes in the future.

Journal ArticleDOI
17 Sep 2021-Biologia
TL;DR: A review of tick and tick-borne pathogens in Slovakia can be found in this paper, with the most important milestones and recent findings, and outline future directions in the investigation of ticks as ectoparasites and vectors of zoonotic agents and in the study of tickborne diseases.
Abstract: In Slovakia, 22 tick species have been found to occur to date. Among them, Ixodes ricinus, Dermacentor reticulatus, D. marginatus and marginally Haemaphysalis concinna, H. inermis and H. punctata have been identified as the species of public health relevance. Ticks in Slovakia were found to harbour and transmit zoonotic and/or potentially zoonotic agents such as tick-borne encephalitis virus (TBEV), spirochaetes of the Borrelia burgdorferi sensu lato (s.l.) complex, the relapsing fever sprirochaete Borrelia miyamotoi, bacteria belonging to the orders Rickettsiales (Rickettsia spp., Anaplasma phagocytophilum, Neoehrlichia mikurensis), Legionellales (Coxiella burnetii), and Thiotrichales (Francisella tularensis), and Babesia spp. parasites (order Piroplasmida). Ixodes ricinus is the principal vector of the largest variety of microorganisms including viruses, bacteria and piroplasms. TBEV, B. burgdorferi s.l., rickettsiae of the spotted fever group, C. burnetii and F. tularensis have been found to cause serious diseases in humans, whereas B. miyamotoi, A. phagocytophilum, N. mikurensis, Babesia microti, and B. venatorum pose lower or potential risk to humans. Distribution of TBEV has a focal character. During the last few decades, new tick-borne encephalitis (TBE) foci and their spread to new areas have been registered and TBE incidence rates have increased. Moreover, Slovakia reports the highest rates of alimentary TBE infections among the European countries. Lyme borreliosis (LB) spirochaetes are spread throughout the distribution range of I. ricinus. Incidence rates of LB have shown a slightly increasing trend since 2010. Only a few sporadic cases of human rickettsiosis, anaplasmosis and babesiosis have been confirmed thus far in Slovakia. The latest large outbreaks of Q fever and tularaemia were recorded in 1993 and 1967, respectively. Since then, a few human cases of Q fever have been reported almost each year. Changes in the epidemiological characteristics and clinical forms of tularaemia have been observed during the last few decades. Global changes and development of modern molecular tools led to the discovery and identification of emerging or new tick-borne microorganisms and symbionts with unknown zoonotic potential. In this review, we provide a historical overview of research on ticks and tick-borne pathogens in Slovakia with the most important milestones and recent findings, and outline future directions in the investigation of ticks as ectoparasites and vectors of zoonotic agents and in the study of tick-borne diseases.

Journal ArticleDOI
TL;DR: Iripin-8, a salivary serpin from the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease, was characterized in this article.
Abstract: Tick saliva is a rich source of antihemostatic, anti-inflammatory, and immunomodulatory molecules that actively help the tick to finish its blood meal. Moreover, these molecules facilitate the transmission of tick-borne pathogens. Here we present the functional and structural characterization of Iripin-8, a salivary serpin from the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Iripin-8 displayed blood-meal-induced mRNA expression that peaked in nymphs and the salivary glands of adult females. Iripin-8 inhibited multiple proteases involved in blood coagulation and blocked the intrinsic and common pathways of the coagulation cascade in vitro. Moreover, Iripin-8 inhibited erythrocyte lysis by complement, and Iripin-8 knockdown by RNA interference in tick nymphs delayed the feeding time. Finally, we resolved the crystal structure of Iripin-8 at 1.89 A resolution to reveal an unusually long and rigid reactive center loop that is conserved in several tick species. The P1 Arg residue is held in place distant from the serpin body by a conserved poly-Pro element on the P' side. Several PEG molecules bind to Iripin-8, including one in a deep cavity, perhaps indicating the presence of a small-molecule binding site. This is the first crystal structure of a tick serpin in the native state, and Iripin-8 is a tick serpin with a conserved reactive center loop that possesses antihemostatic activity that may mediate interference with host innate immunity.

Journal ArticleDOI
TL;DR: This study is the first to provide the prevalences of the tick-borne pathogens for Chernivtsi, Khmelnytskyi, and Vinnytsia, and theFirst to detect Neorickettsia mikurensis in ixodid ticks from Ukraine.

Journal ArticleDOI
TL;DR: Iripin-3, a protein expressed in the salivary glands of the tick Ixodes ricinus, is a European vector of tick-borne encephalitis and Lyme disease as mentioned in this paper.
Abstract: Tick saliva is a rich source of pharmacologically and immunologically active molecules. These salivary components are indispensable for successful blood feeding on vertebrate hosts and are believed to facilitate the transmission of tick-borne pathogens. Here we present the functional and structural characterization of Iripin-3, a protein expressed in the salivary glands of the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Belonging to the serpin superfamily of protease inhibitors, Iripin-3 strongly inhibited the proteolytic activity of serine proteases kallikrein and matriptase. In an in vitro setup, Iripin-3 was capable of modulating the adaptive immune response as evidenced by reduced survival of mouse splenocytes, impaired proliferation of CD4+ T lymphocytes, suppression of the T helper type 1 immune response, and induction of regulatory T cell differentiation. Apart from altering acquired immunity, Iripin-3 also inhibited the extrinsic blood coagulation pathway and reduced the production of pro-inflammatory cytokine interleukin-6 by lipopolysaccharide-stimulated bone marrow-derived macrophages. In addition to its functional characterization, we present the crystal structure of cleaved Iripin-3 at 1.95 A resolution. Iripin-3 proved to be a pluripotent salivary serpin with immunomodulatory and anti-hemostatic properties that could facilitate tick feeding via the suppression of host anti-tick defenses. Physiological relevance of Iripin-3 activities observed in vitro needs to be supported by appropriate in vivo experiments.

Journal ArticleDOI
TL;DR: To the best of the authors' knowledge, this is the first report on the prevalence of TBEV in unfed D. reticulatus ticks and in I. ricinus unfed larvae in Lithuania.

Journal ArticleDOI
TL;DR: In this article, a study aimed to assess the occurrence of tick-borne pathogens (TBPs) in ticks collected from hunters and their hunting dogs in a hunting area of southern Italy.
Abstract: Citizen science may be described as a research involving communities and individuals, other than scientists. Following this approach, along with the evidence of a high prevalence of Rickettsia spp. in Dermacentor marginatus from wild boars in hunting areas of southern Italy, this study aimed to assess the occurrence of tick-borne pathogens (TBPs) in ticks collected from hunters and their hunting dogs. From October 2020 to May 2021, ticks were collected from wild boar hunters (n = 347) and their dogs (n = 422) in regions of southern Italy (i.e., Apulia, Basilicata, Calabria, Campania and Sicily). All ticks were morphologically identified, classified according to gender, feeding status, host, geographic origin, and molecularly screened for zoonotic bacteria. Adult ticks (n = 411) were collected from hunters (i.e., n = 29; 8.4%; mean of 1.6 ticks for person) and dogs (i.e., n = 200; 47.4%; mean of 1.8 ticks for animal) and identified at species level as D. marginatus (n = 240, 58.4%), Rhipicephalus sanguineus sensu lato (n = 135, 32.8%), Rhipicephalus turanicus (n = 27, 6.6%) and Ixodes ricinus (n = 9, 2.2%). Overall, 45 ticks (i.e., 10.9%, 95% CI: 8.3-14.3) tested positive for at least one tick-borne agent, being Rickettsia slovaca the most frequent species (n = 37, 9.0%), followed by Rickettsia raoultii, Rickettsia aeschlimannii, Rickettsia monacensis, Coxiella burnetii, Borrelia lusitaniae and Candidatus Midichloria mitochondrii (n = 2, 0.5% each). Data herein presented demonstrate a relevant risk of exposure to TBPs for hunters and hunting dogs during the hunting activities. Therefore, the role of hunters to monitor the circulation of ticks in rural areas may be considered an effective example of the citizen science approach, supporting the cooperation toward private and public health stakeholders.

Journal ArticleDOI
TL;DR: Neoehrlichia mikurensis is an intracellular bacterium transmitted in Europe and Asia by ticks of the Ixodes ricinus complex as mentioned in this paper, which is a tick-resistant bacterium.
Abstract: Neoehrlichia mikurensis is an intracellular bacterium transmitted in Europe and Asia by ticks of the Ixodes ricinus complex. Interest in this bacterium has increased since it was demonstrated to be...

Journal ArticleDOI
TL;DR: The authors used generalized linear mixed effects models and AIC-based model selection to identify the ecological factors that influence inter-annual variation in the nymphal infection prevalence (NIP) and the density of infected nymphs (DIN).
Abstract: The incidence of Lyme borreliosis and other tick-borne diseases is increasing in Europe and North America. There is currently much interest in identifying the ecological factors that determine the density of infected ticks as this variable determines the risk of Lyme borreliosis to vertebrate hosts, including humans. Lyme borreliosis is caused by the bacterium Borrelia burgdorferi sensu lato (s.l.) and in western Europe, the hard tick Ixodes ricinus is the most important vector. Over a 15-year period (2004–2018), we monitored the monthly abundance of I. ricinus ticks (nymphs and adults) and their B. burgdorferi s.l. infection status at four different elevations on a mountain in western Switzerland. We collected climate variables in the field and from nearby weather stations. We obtained data on beech tree seed production (masting) from the literature, as the abundance of Ixodes nymphs can increase dramatically 2 years after a masting event. We used generalized linear mixed effects models and AIC-based model selection to identify the ecological factors that influence inter-annual variation in the nymphal infection prevalence (NIP) and the density of infected nymphs (DIN). We found that the NIP decreased by 78% over the study period. Inter-annual variation in the NIP was explained by the mean precipitation in the present year, and the duration that the DNA extraction was stored in the freezer prior to pathogen detection. The DIN decreased over the study period at all four elevation sites, and the decrease was significant at the top elevation. Inter-annual variation in the DIN was best explained by elevation site, year, beech tree masting index 2 years prior and the mean relative humidity in the present year. This is the first study in Europe to demonstrate that seed production by deciduous trees influences the density of nymphs infected with B. burgdorferi s.l. and hence the risk of Lyme borreliosis. Public health officials in Europe should be aware that masting by deciduous trees is an important predictor of the risk of Lyme borreliosis.

Journal ArticleDOI
TL;DR: In this article, the authors found no evidence for Ixodes ricinus ticks, Culicoides punctatus and Obsoletus complex biting midges, Aedes spp., Anopheles spp. and Culiseta annulata mosquitoes, and Haematopota pluvialis tabanids playing a role in ASFV transmission in wild boar population in Estonia.
Abstract: African swine fever (ASF) is a highly pathogenic viral disease affecting all Suidae, with Ornithodoros moubata complex soft ticks acting as the biological arthropod vectors of the causative agent, African swine fever virus (ASFV). While ASFV is also transmissible via direct contact, pig products and fomites, other arthropods may be involved in virus transmission and persistence. Therefore, we checked various groups of blood-feeding arthropods collected during summer 2017 in wild boar habitats on the Estonian Island of Saaremaa for the presence of ASFV. Saaremaa had the highest ASF infection prevalences in Estonia in 2017, with an incidence of 9% among hunted wild boar. In addition to ASFV, we tested for other selected pathogens. In total, 784 ticks, 6,274 culicoid biting midges, 77 tabanids and 757 mosquitoes were tested as individuals or pools. No ASFV-DNA was found in any of them although about 20% of the tick samples tested positive for swine DNA. By contrast, tick-borne encephalitis virus-RNA was detected in one out of 37 tick pools (2.7%) and Borrelia burgdorferi s.l.-DNA in 20 individual ticks and 17 tick pools (25.2% of all samples). No Schmallenberg virus was detected in the Culicoides specimens. In conclusion, we found no evidence for Ixodes ricinus ticks, Culicoides punctatus and Obsoletus complex biting midges, Aedes spp., Anopheles spp. and Culiseta annulata mosquitoes, and Haematopota pluvialis tabanids playing a role in ASFV transmission in the wild boar population in Estonia.

Journal ArticleDOI
TL;DR: In this article, the authors used real-time PCR of 3150 individual Ixodes ticks to determine Borrelia spp. prevalence and species distribution in Northern Germany, and found significant differences in seasonal infection rates, but not between regions, landscape types or sampling years.
Abstract: To determine Borrelia spp. (Spirochaetales: Spirochaetaceae) prevalence and species distribution in Northern Germany, Ixodes ticks were sampled from April to October in 2018 and 2019 by the flagging method at three locations each in five regions. Analysis by quantitative real-time PCR of 3150 individual ticks revealed an overall prevalence of 30.6%, without significant differences between tick stages (31.7% positive adults, 28.6% positive nymphs). Significant differences were observed in seasonal infection rates, but not between regions, landscape types or sampling years. Analysis of co-infections with Rickettsiales indicated a negative association between Borrelia and Anaplasma phagocytophilum infection. The most frequent Borrelia species differentiated by Reverse Line Blot were B. afzelii and B. garinii/B. bavariensis, followed by B. valaisiana, B. burgdorferi sensu stricto, B. spielmanii and B. lusitaniae. Furthermore, B. miyamotoi was identified in 12.9% of differentiable samples. No effect of region nor landscape type on species composition was found, but significant variations in the distribution at the different sampling sites within a region were observed. The detected monthly fluctuations in prevalence and the differences in intra-regional Borrelia species distribution underline the importance of long-term and multi-location monitoring of Borrelia spp. in ticks as an essential part of public health assessment.