scispace - formally typeset
Search or ask a question

Showing papers on "Master equation published in 2017"


Journal ArticleDOI
TL;DR: In this paper, an overview is given of some of the most important techniques available to tackle the dynamics of an OQS beyond the Markov approximation, which requires a large separation of system and environment time scales.
Abstract: Open quantum systems (OQSs) cannot always be described with the Markov approximation, which requires a large separation of system and environment time scales. An overview is given of some of the most important techniques available to tackle the dynamics of an OQS beyond the Markov approximation. Some of these techniques, such as master equations, Heisenberg equations, and stochastic methods, are based on solving the reduced OQS dynamics, while others, such as path integral Monte Carlo or chain mapping approaches, are based on solving the dynamics of the full system. The physical interpretation and derivation of the various approaches are emphasized, how they are connected is explored, and how different methods may be suitable for solving different problems is examined.

887 citations


Journal ArticleDOI
TL;DR: In this paper, the authors introduce some of the theories used to describe these steady-state flows in a variety of mesoscopic or nanoscale systems, including linear response theory with or without magnetic fields, Landauer scattering theory in the linear response regime and far from equilibrium.

591 citations


Journal ArticleDOI
TL;DR: In this article, the authors compare the local and global approaches against an exact solution for a particular class of thermal machines, and show that the use of a local master equation is generally well justified.
Abstract: The study of quantum thermal machines, and more generally of open quantum systems, often relies on master equations. Two approaches are mainly followed. On the one hand, there is the widely used, but often criticized, local approach, where machine sub-systems locally couple to thermal baths. On the other hand, in the more established global approach, thermal baths couple to global degrees of freedom of the machine. There has been debate as to which of these two conceptually different approaches should be used in situations out of thermal equilibrium. Here we compare the local and global approaches against an exact solution for a particular class of thermal machines. We consider thermodynamically relevant observables, such as heat currents, as well as the quantum state of the machine. Our results show that the use of a local master equation is generally well justified. In particular, for weak inter-system coupling, the local approach agrees with the exact solution, whereas the global approach fails for non-equilibrium situations. For intermediate coupling, the local and the global approach both agree with the exact solution and for strong coupling, the global approach is preferable. These results are backed by detailed derivations of the regimes of validity for the respective approaches.

217 citations


Journal ArticleDOI
TL;DR: In this paper, the authors compare the local and global approaches against an exact solution for a particular class of thermal machines, and show that the use of a local master equation is generally well justified.
Abstract: The study of quantum thermal machines, and more generally of open quantum systems, often relies on master equations. Two approaches are mainly followed. On the one hand, there is the widely used, but often criticized, local approach, where machine sub-systems locally couple to thermal baths. On the other hand, in the more established global approach, thermal baths couple to global degrees of freedom of the machine. There has been debate as to which of these two conceptually different approaches should be used in situations out of thermal equilibrium. Here we compare the local and global approaches against an exact solution for a particular class of thermal machines. We consider thermodynamically relevant observables, such as heat currents, as well as the quantum state of the machine. Our results show that the use of a local master equation is generally well justified. In particular, for weak inter-system coupling, the local approach agrees with the exact solution, whereas the global approach fails for non-equilibrium situations. For intermediate coupling, the local and the global approach both agree with the exact solution and for strong coupling, the global approach is preferable. These results are backed by detailed derivations of the regimes of validity for the respective approaches.

212 citations


Journal ArticleDOI
TL;DR: The global and local approach may be viewed as complementary tools, best suited to different parameter regimes, as the inter-node coupling grows, the LME breaks down whilst the GME becomes correct.
Abstract: When deriving a master equation for a multipartite weakly-interacting open quantum systems, dissipation is often addressed locally on each component, i.e. ignoring the coherent couplings, which are later added ‘by hand’. Although simple, the resulting local master equation (LME) is known to be thermodynamically inconsistent. Otherwise, one may always obtain a consistent global master equation (GME) by working on the energy basis of the full interacting Hamiltonian. Here, we consider a two-node ‘quantum wire’connected to two heat baths. The stationary solution of the LME and GME are obtained and benchmarked against the exact result. Importantly, in our model, the validity of the GME is constrained by the underlying secular approximation. Whenever this breaks down (for resonant weakly-coupled nodes), we observe that the LME, in spite of being thermodynamically flawed: (a) predicts the correct steady state, (b) yields with the exact asymptotic heat currents, and (c) reliably reflects the correlations between the nodes. In contrast, the GME fails at all three tasks. Nonetheless, as the inter-node coupling grows, the LME breaks down whilst the GME becomes correct. Hence, the global and local approach may be viewed as complementary tools, best suited to different parameter regimes.

151 citations


Journal ArticleDOI
TL;DR: A perturbation theory of quantum (and classical) master equations with slowly varying parameters applicable to systems which are externally controlled on a time scale much longer than their characteristic relaxation time is developed.
Abstract: We develop a perturbation theory of quantum (and classical) master equations with slowly varying parameters, applicable to systems which are externally controlled on a time scale much longer than their characteristic relaxation time. We apply this technique to the analysis of finite-time isothermal processes in which, differently from quasistatic transformations, the state of the system is not able to continuously relax to the equilibrium ensemble. Our approach allows one to formally evaluate perturbations up to arbitrary order to the work and heat exchange associated with an arbitrary process. Within first order in the perturbation expansion, we identify a general formula for the efficiency at maximum power of a finite-time Carnot engine. We also clarify under which assumptions and in which limit one can recover previous phenomenological results as, for example, the Curzon-Ahlborn efficiency.

144 citations


Journal ArticleDOI
TL;DR: In this paper, the authors theoretically investigated the properties of a single driven-dissipative nonlinear photon mode in a well-defined thermodynamical limit of large excitation numbers, and the exact quantum solution described a first-order phase transition in the regime where semiclassical theory predicts optical bistability.
Abstract: We theoretically investigate the critical properties of a single driven-dissipative nonlinear photon mode. In a well-defined thermodynamical limit of large excitation numbers, the exact quantum solution describes a first-order phase transition in the regime where semiclassical theory predicts optical bistability. We study the behavior of the complex spectral gap associated with the Liouvillian superoperator of the corresponding master equation. We show that in this limit the Liouvillian gap vanishes exponentially and that the bimodality of the photon Wigner function disappears. The connection between the considered thermodynamical limit of large photon numbers for the single-mode cavity and the thermodynamical limit of many cavities for a driven-dissipative Bose-Hubbard system is discussed.

138 citations


Journal ArticleDOI
TL;DR: This work reconstructs the chain of events, intuitions and ideas that led to the formulation of the Gorini, Kossakowski, Lindblad and Sudarshan equation.
Abstract: We reconstruct the chain of events, intuitions and ideas that led to the formulation of the Gorini, Kossakowski, Lindblad and Sudarshan equation.

128 citations


Journal ArticleDOI
TL;DR: In this article, the authors implemented deterministic state transfer and entanglement protocols between two superconducting qubits fabricated on separate chips, achieving a transfer process fidelity of $80.02 \pm 0.07 \%.
Abstract: Sharing information coherently between nodes of a quantum network is at the foundation of distributed quantum information processing. In this scheme, the computation is divided into subroutines and performed on several smaller quantum registers connected by classical and quantum channels. A direct quantum channel, which connects nodes deterministically, rather than probabilistically, is advantageous for fault-tolerant quantum computation because it reduces the threshold requirements and can achieve larger entanglement rates. Here, we implement deterministic state transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits constitute a universal quantum node capable of sending, receiving, storing, and processing quantum information. Our implementation is based on an all-microwave cavity-assisted Raman process which entangles or transfers the qubit state of a transmon-type artificial atom to a time-symmetric itinerant single photon. We transfer qubit states at a rate of $50 \, \rm{kHz}$ using the emitted photons which are absorbed at the receiving node with a probability of $98.1 \pm 0.1 \%$ achieving a transfer process fidelity of $80.02 \pm 0.07 \%$. We also prepare on demand remote entanglement with a fidelity as high as $78.9 \pm 0.1 \%$. Our results are in excellent agreement with numerical simulations based on a master equation description of the system. This deterministic quantum protocol has the potential to be used as a backbone of surface code quantum error correction across different nodes of a cryogenic network to realize large-scale fault-tolerant quantum computation in the circuit quantum electrodynamic architecture.

127 citations


Journal ArticleDOI
TL;DR: In this article, the authors consider a two-node ''quantum wire'' connected to two heat baths, and compare the stationary solution of the LME and GME against the exact result.
Abstract: When deriving a master equation for a multipartite weakly-interacting open quantum systems, dissipation is often addressed \textit{locally} on each component, i.e. ignoring the coherent couplings, which are later added `by hand'. Although simple, the resulting local master equation (LME) is known to be thermodynamically inconsistent. Otherwise, one may always obtain a consistent \textit{global} master equation (GME) by working on the energy basis of the full interacting Hamiltonian. Here, we consider a two-node `quantum wire' connected to two heat baths. The stationary solution of the LME and GME are obtained and benchmarked against the exact result. Importantly, in our model, the validity of the GME is constrained by the underlying secular approximation. Whenever this breaks down (for resonant weakly-coupled nodes), we observe that the LME, in spite of being thermodynamically flawed: (a) predicts the correct steady state, (b) yields the exact asymptotic heat currents, and (c) reliably reflects the correlations between the nodes. In contrast, the GME fails at all three tasks. Nonetheless, as the inter-node coupling grows, the LME breaks down whilst the GME becomes correct. Hence, the global and local approach may be viewed as \textit{complementary} tools, best suited to different parameter regimes.

107 citations


Journal ArticleDOI
TL;DR: This work proposes a realistic autonomous heat engine that can serve as a test bed for quantum effects in the context of thermodynamics and analytically derive the performance of the engine in the classical regime via a set of nonlinear Langevin equations.
Abstract: The triumph of heat engines is their ability to convert the disordered energy of thermal sources into useful mechanical motion. In recent years, much effort has been devoted to generalizing thermodynamic notions to the quantum regime, partly motivated by the promise of surpassing classical heat engines. Here, we instead adopt a bottom-up approach: we propose a realistic autonomous heat engine that can serve as a test bed for quantum effects in the context of thermodynamics. Our model draws inspiration from actual piston engines and is built from closed-system Hamiltonians and weak bath coupling terms. We analytically derive the performance of the engine in the classical regime via a set of nonlinear Langevin equations. In the quantum case, we perform numerical simulations of the master equation. Finally, we perform a dynamic and thermodynamic analysis of the engine's behavior for several parameter regimes in both the classical and quantum case and find that the latter exhibits a consistently lower efficiency due to additional noise.

Journal ArticleDOI
TL;DR: This manuscript motivates quantum maps from a tomographic perspective, and derive their well-known representations, and dives into the murky world beyond these maps, where recent research has yielded their generalisation to non-Markovian quantum processes.
Abstract: This special volume celebrates the 40th anniversary of the discovery of the Gorini-Kossakowski-Sudarshan-Lindblad master equation, which is widely used in quantum physics and quantum chemistry. The...

Journal ArticleDOI
TL;DR: This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals, and uses the language of probability theory rather than quantum (field) theory to make this review accessible to a broad community.
Abstract: This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a 'generating functional', which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a 'forward' and a 'backward' path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon expanding the forward and the backward path integrals around stationary paths, we then discuss and extend a recent method for the computation of rare event probabilities. Besides, we also derive path integral representations for processes with continuous state spaces whose forward and backward master equations admit Kramers-Moyal expansions. A truncation of the backward expansion at the level of a diffusion approximation recovers a classic path integral representation of the (backward) Fokker-Planck equation. One can rewrite this path integral in terms of an Onsager-Machlup function and, for purely diffusive Brownian motion, it simplifies to the path integral of Wiener. To make this review accessible to a broad community, we have used the language of probability theory rather than quantum (field) theory and do not assume any knowledge of the latter. The probabilistic structures underpinning various technical concepts, such as coherent states, the Doi-shift, and normal-ordered observables, are thereby made explicit.

Journal ArticleDOI
TL;DR: In this article, critical properties of two-dimensional lattices of spins interacting via an anisotropic Heisenberg Hamiltonian that are subject to incoherent spin flips are explored.
Abstract: We explore critical properties of two-dimensional lattices of spins interacting via an anisotropic Heisenberg Hamiltonian that are subject to incoherent spin flips. We determine the steady-state solution of the master equation for the density matrix via the corner-space renormalization method. We investigate the finite-size scaling and critical exponent of the magnetic linear susceptibility associated with a dissipative ferromagnetic transition. We show that the von Neumann entropy increases across the critical point, revealing a strongly mixed character of the ferromagnetic phase. Entanglement is witnessed by the quantum Fisher information, which exhibits a critical behavior at the transition point, showing that quantum correlations play a crucial role in the transition.

Journal ArticleDOI
TL;DR: A nonlocal convection-diffusion model is introduced for the master equation of Markov jump processes in bounded domains and the nonlocal operator is shown to be the generator of finite-range nonsymmetric jump processes.
Abstract: Abstract A nonlocal convection-diffusion model is introduced for the master equation of Markov jump processes in bounded domains. With minimal assumptions on the model parameters, the nonlocal steady and unsteady state master equations are shown to be well-posed in a weak sense. Then the nonlocal operator is shown to be the generator of finite-range nonsymmetric jump processes and, when certain conditions on the model parameters hold, the generators of finite and infinite activity Lévy and Lévy-type jump processes are shown to be special instances of the nonlocal operator.

Journal ArticleDOI
TL;DR: In this paper, the quantum correlation properties of a dissipative Bose-Hubbard dimer in the presence of a coherent drive were theoretically explored and the critical behavior in a well-defined thermodynamical limit of large excitation numbers was considered and analyzed within a Gaussian approach.
Abstract: We theoretically explore the quantum correlation properties of a dissipative Bose-Hubbard dimer in the presence of a coherent drive. In particular, we focus on the regime where the semiclassical theory predicts a bifurcation with a spontaneous spatial symmetry breaking. The critical behavior in a well-defined thermodynamical limit of large excitation numbers is considered and analyzed within a Gaussian approach. The case of a finite boson density is also examined by numerically integrating the Lindblad master equation for the density matrix. We predict the critical behavior around the bifurcation points accompanied by large quantum correlations of the mixed steady state, in particular, exhibiting a peak in the logarithmic entanglement negativity.

Journal ArticleDOI
TL;DR: The regularity theory for solutions to space-time nonlocal equations driven by fractional powers of the heat operator, and a pointwise integro-differential formula for $(\partial_t-\Delta)^su(t,x)$ and parabolic maximum principles are developed.
Abstract: We develop the regularity theory for solutions to space-time nonlocal equations driven by fractional powers of the heat operator $(\partial_t-\Delta)^su(t,x)=f(t,x)~{for}~0

Journal ArticleDOI
TL;DR: This work shows how a known very interesting master equation with an always negative decay rate [eternal non-Markovianity (ENM] arises from simple stochastic Schrödinger dynamics (random unitary dynamics) as arising from a mixture of Markov (semi-group) open system dynamics.
Abstract: The theoretical description of quantum dynamics in an intriguing way does not necessarily imply the underlying dynamics is indeed intriguing. Here we show how a known very interesting master equation with an always negative decay rate [eternal non-Markovianity (ENM)] arises from simple stochastic Schrodinger dynamics (random unitary dynamics). Equivalently, it may be seen as arising from a mixture of Markov (semi-group) open system dynamics. Both these approaches lead to a more general family of CPT maps, characterized by a point within a parameter triangle. Our results show how ENM quantum dynamics can be realised easily in the laboratory. Moreover, we find a quantum time-continuously measured (quantum trajectory) realisation of the dynamics of the ENM master equation based on unitary transformations and projective measurements in an extended Hilbert space, guided by a classical Markov process. Furthermore, a Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) representation of the dynamics in an extended Hilbert space can be found, with a remarkable property: there is no dynamics in the ancilla state. Finally, analogous constructions for two qubits extend these results from non-CP-divisible to non-P-divisible dynamics.

Journal ArticleDOI
TL;DR: In this article, the authors studied the thermoelectric properties and heat-to-work conversion performance of an interacting, multilevel quantum dot (QD) weakly coupled to electronic reservoirs.
Abstract: We study the thermoelectric properties and heat-to-work conversion performance of an interacting, multilevel quantum dot (QD) weakly coupled to electronic reservoirs. We focus on the sequential tunneling regime. The dynamics of the charge in the QD is studied by means of master equations for the probabilities of occupation. From here we compute the charge and heat currents in the linear response regime. Assuming a generic multiterminal setup, and for low temperatures (quantum limit), we obtain analytical expressions for the transport coefficients which account for the interplay between interactions (charging energy) and level quantization. In the case of systems with two and three terminals we derive formulas for the power factor $Q$ and the figure of merit $ZT$ for a QD-based heat engine, identifying optimal working conditions which maximize output power and efficiency of heat-to-work conversion. Beyond the linear response we concentrate on the two-terminal setup. We first study the thermoelectric nonlinear coefficients assessing the consequences of large temperature and voltage biases, focusing on the breakdown of the Onsager reciprocal relation between thermopower and Peltier coefficient. We then investigate the conditions which optimize the performance of a heat engine, finding that in the quantum limit output power and efficiency at maximum power can almost be simultaneously maximized by choosing appropriate values of electrochemical potential and bias voltage. At last we study how energy level degeneracy can increase the output power.

Journal ArticleDOI
TL;DR: An exact canonical master equation of the Lindblad form is derived for a central spin interacting uniformly with a sea of completely unpolarized spins in this article, and the Kraus operators for the dynamical map are also derived.
Abstract: An exact canonical master equation of the Lindblad form is derived for a central spin interacting uniformly with a sea of completely unpolarized spins. The Kraus operators for the dynamical map are also derived. The non-Markovianity of the dynamics in terms of the divisibility breaking of the dynamical map and the increase of the trace distance fidelity between quantum states is shown. Moreover, it is observed that the irreversible entropy production rate is always negative (for a fixed initial state) whenever the dynamics exhibits non-Markovian behavior. In continuation with the study of witnessing non-Markovianity, it is shown that the positive rate of change of the purity of the central qubit is a faithful indicator of the non-Markovian information backflow. Given the experimental feasibility of measuring the purity of a quantum state, a possibility of experimental demonstration of non-Markovianity and the negative irreversible entropy production rate is addressed. This gives the present work considerable practical importance for detecting the non-Markovianity and the negative irreversible entropy production rate.

Journal ArticleDOI
TL;DR: A version of FSP which is referred to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space is developed.
Abstract: The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 106 states can be efficiently solved.

Journal ArticleDOI
TL;DR: It is shown that, with replica exchange molecular dynamics (REMD), one can not only sample equilibrium properties but also extract kinetic information, and the practical applicability of the procedure is demonstrated by constructing master equation models of peptide and RNA folding from REMD simulations.
Abstract: Transitions between metastable states govern many fundamental processes in physics, chemistry and biology, from nucleation events in phase transitions to the folding of proteins. The free energy surfaces underlying these processes can be obtained from simulations using enhanced sampling methods. However, their altered dynamics makes kinetic and mechanistic information difficult or impossible to extract. Here, we show that, with replica exchange molecular dynamics (REMD), one can not only sample equilibrium properties but also extract kinetic information. For systems that strictly obey first-order kinetics, the procedure to extract rates is rigorous. For actual molecular systems whose long-time dynamics are captured by kinetic rate models, accurate rate coefficients can be determined from the statistics of the transitions between the metastable states at each replica temperature. We demonstrate the practical applicability of the procedure by constructing master equation (Markov state) models of peptide and...

Journal ArticleDOI
TL;DR: It is shown that the rectification ability of the diode increases with the excitation frequencies difference, which drives the asymmetry of the heat current, when the temperatures of the thermal baths are inverted.
Abstract: We demonstrate that two interacting spinlike systems characterized by different excitation frequencies and coupled to a thermal bath each, can be used as a quantum thermal diode capable of efficiently rectifying the heat current. This is done by deriving analytical expressions for both the heat current and rectification factor of the diode, based on the solution of a master equation for the density matrix. Higher rectification factors are obtained for lower heat currents, whose magnitude takes their maximum values for a given interaction coupling proportional to the temperature of the hotter thermal bath. It is shown that the rectification ability of the diode increases with the excitation frequencies difference, which drives the asymmetry of the heat current, when the temperatures of the thermal baths are inverted. Furthermore, explicit conditions for the optimization of the rectification factor and heat current are explicitly found.

Journal ArticleDOI
TL;DR: In this article, the authors considered a pair of coupled fermionic modes, each one locally exchanging energy and particles with an independent, macroscopic thermal reservoir, and showed that the generator of the asymptotic master equation is not additive, i.e., it cannot be expressed as a sum of contributions describing the action of each reservoir alone.
Abstract: We theoretically study a simple non-equilibrium quantum network whose dynamics can be expressed and exactly solved in terms of a time-local master equation. Specifically, we consider a pair of coupled fermionic modes, each one locally exchanging energy and particles with an independent, macroscopic thermal reservoir. We show that the generator of the asymptotic master equation is not additive, i.e. it cannot be expressed as a sum of contributions describing the action of each reservoir alone. Instead, we identify an additional interference term that generates coherences in the energy eigenbasis, associated with the current of conserved particles flowing in the steady state. Notably, non-additivity arises even for wide-band reservoirs coupled arbitrarily weakly to the system. Our results shed light on the non-trivial interplay between multiple thermal noise sources in modular open quantum systems.

Journal ArticleDOI
TL;DR: In this article, a quantum master equation is derived for the reduced density matrix of perturbations, drawing parallels with quantum Brownian motion, where the emergence of fluctuation and dissipation terms.
Abstract: We examine environmental decoherence of cosmological perturbations in order to study the quantum-to-classical transition and the impact of noise on entanglement during inflation. Given an explicit interaction between the system and environment, we derive a quantum master equation for the reduced density matrix of perturbations, drawing parallels with quantum Brownian motion, where we see the emergence of fluctuation and dissipation terms. Although the master equation is not in Lindblad form, we see how typical solutions exhibit positivity on super-horizon scales, leading to a physically meaningful density matrix. This allows us to write down a Langevin equation with stochastic noise for the classical trajectories which emerge from the quantum system on super-horizon scales. In particular, we find that environmental decoherence increases in strength as modes exit the horizon, with the growth driven essentially by white noise coming from local contributions to environmental correlations. Finally, we use our master equation to quantify the strength of quantum correlations as captured by discord. We show that environmental interactions have a tendency to decrease the size of the discord and that these effects are determined by the relative strength of the expansion rate and interaction rate of the environment. We interpret this in terms of the competing effects of particle creation versus environmental fluctuations, which tend to increase and decrease the discord respectively.

Journal ArticleDOI
TL;DR: In this article, the dynamics of two interacting two-level systems (qubits) having one of them isolated and the other coupled to a large number of modes of the quantized electromagnetic field (thermal reservoir) were investigated.

Journal ArticleDOI
26 Apr 2017-EPL
TL;DR: In this paper, the authors proposed a spin-star network, where a central spin (1/2) acting as a quantum fuel, is coupled to N outer spin particles, and the central spin can have an effective temperature, higher than that of the bath, scaling nonlinearly with N. Such temperature can be tuned with the anisotropy parameter of the coupling.
Abstract: We propose a spin-star network, where a central spin-(1/2), acting as a quantum fuel, is coupled to N outer spin-(1/2) particles. If the network is in thermal equilibrium with a heat bath, the central spin can have an effective temperature, higher than that of the bath, scaling nonlinearly with N. Such temperature can be tuned with the anisotropy parameter of the coupling. Using a beam of such central spins to pump a micromaser cavity, we determine the dynamics of the cavity field using a coarse-grained master equation. We find that the central-spin beam effectively acts as a hot reservoir to the cavity field and brings it to a thermal steady state whose temperature benefits from the same nonlinear enhancement with N and results in a highly efficient photonic Carnot engine. The validity of our conclusions is tested against the presence of atomic and cavity damping using a microscopic master equation method for typical microwave cavity-QED parameters. The role played by quantum coherence and correlations on the scaling effect is pointed out. An alternative scheme where the spin-(1/2) is coupled to a macroscopic spin- particle is also discussed.

Journal ArticleDOI
TL;DR: In this article, an alternative stochastic approach to dissipative quantum dynamics is outlined and illustrated through a harmonic-chain model for which the approach of local Lindblad operators fails.
Abstract: Master equations of Lindblad type have attained prominent status in the fields of quantum optics and quantum information since they are guaranteed to satisfy fundamental notions of quantum dynamics such as complete positivity. When Lindblad operators are used to describe thermal reservoirs in contact with an open quantum system, the fundamental laws of thermodynamics and the fluctuation-dissipation theorem provide additional mandatory criteria. We show several examples of innocent-looking Lindblad operators which have questionable properties in this regard. Compatibility criteria between Hamiltonian and Lindblad terms as well as consequences of their violation are discussed. An alternative stochastic approach to dissipative quantum dynamics is outlined and illustrated through a harmonic-chain model for which the approach of local Lindblad operators fails.

Journal ArticleDOI
TL;DR: In this article, the second-order time-convolutionless (TCL2) quantum master equation was used for the calculation of linear and nonlinear spectroscopy of multichromophore systems.
Abstract: We investigate the accuracy of the second-order time-convolutionless (TCL2) quantum master equation for the calculation of linear and nonlinear spectroscopies of multichromophore systems. We show that even for systems with non-adiabatic coupling, the TCL2 master equation predicts linear absorption spectra that are accurate over an extremely broad range of parameters and well beyond what would be expected based on the perturbative nature of the approach; non-equilibrium population dynamics calculated with TCL2 for identical parameters are significantly less accurate. For third-order (two-dimensional) spectroscopy, the importance of population dynamics and the violation of the so-called quantum regression theorem degrade the accuracy of TCL2 dynamics. To correct these failures, we combine the TCL2 approach with a classical ensemble sampling of slow microscopic bath degrees of freedom, leading to an efficient hybrid quantum-classical scheme that displays excellent accuracy over a wide range of parameters. In the spectroscopic setting, the success of such a hybrid scheme can be understood through its separate treatment of homogeneous and inhomogeneous broadening. Importantly, the presented approach has the computational scaling of TCL2, with the modest addition of an embarrassingly parallel prefactor associated with ensemble sampling. The presented approach can be understood as a generalized inhomogeneous cumulant expansion technique, capable of treating multilevel systems with non-adiabatic dynamics.

Journal ArticleDOI
TL;DR: In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated.