scispace - formally typeset
Search or ask a question

Showing papers on "Mid-ocean ridge published in 2003"


Journal ArticleDOI
27 Nov 2003-Nature
TL;DR: An ultraslow-spreading class of ocean ridge that is characterized by intermittent volcanism and a lack of transform faults is revealed, and it is found that the mantle beneath such ridges is emplaced continuously to the seafloor over large regions.
Abstract: New investigations of the Southwest Indian and Arctic ridges reveal an ultraslow-spreading class of ocean ridge that is characterized by intermittent volcanism and a lack of transform faults. We find that the mantle beneath such ridges is emplaced continuously to the seafloor over large regions. The differences between ultraslow- and slow-spreading ridges are as great as those between slow- and fast-spreading ridges. The ultraslow-spreading ridges usually form at full spreading rates less than about 12 mm yr-1, though their characteristics are commonly found at rates up to approximately 20 mm yr-1. The ultraslow-spreading ridges consist of linked magmatic and amagmatic accretionary ridge segments. The amagmatic segments are a previously unrecognized class of accretionary plate boundary structure and can assume any orientation, with angles relative to the spreading direction ranging from orthogonal to acute. These amagmatic segments sometimes coexist with magmatic ridge segments for millions of years to form stable plate boundaries, or may displace or be displaced by transforms and magmatic ridge segments as spreading rate, mantle thermal structure and ridge geometry change.

856 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a new compilation of physical properties of minerals relevant to subduction zones and new phase diagrams for mid-ocean ridge basalt, lherzolite, depleted LH, harzburgite, and serpentinite.
Abstract: [1] We present a new compilation of physical properties of minerals relevant to subduction zones and new phase diagrams for mid-ocean ridge basalt, lherzolite, depleted lherzolite, harzburgite, and serpentinite. We use these data to calculate H2O content, density and seismic wave speeds of subduction zone rocks. These calculations provide a new basis for evaluating the subduction factory, including (1) the presence of hydrous phases and the distribution of H2O within a subduction zone; (2) the densification of the subducting slab and resultant effects on measured gravity and slab shape; and (3) the variations in seismic wave speeds resulting from thermal and metamorphic processes at depth. In considering specific examples, we find that for ocean basins worldwide the lower oceanic crust is partially hydrated (<1.3 wt % H2O), and the uppermost mantle ranges from unhydrated to � 20% serpentinized (� 2.4 wt % H2O). Anhydrous eclogite cannot be distinguished from harzburgite on the basis of wave speeds, but its � 6% greater density may render it detectable through gravity measurements. Subducted hydrous crust in cold slabs can persist to several gigapascals at seismic velocities that are several percent slower than the surrounding mantle. Seismic velocities and VP/VS ratios indicate that mantle wedges locally reach 60–80% hydration. INDEX TERMS: 3040 Marine Geology and Geophysics: Plate tectonics (8150, 8155, 8157, 8158); 3660 Mineralogy and Petrology: Metamorphic petrology; 3919 Mineral Physics: Equations of state; 5199 Physical Properties of Rocks: General or miscellaneous; 8123 Tectonophysics: Dynamics, seismotectonics; KEYWORDS: subduction, seismic velocities, mineral physics, H2O

834 citations


Journal ArticleDOI
Catherine Mével1
TL;DR: Mevel et al. as mentioned in this paper showed that the MOHO likely corresponds to a hydration boundary, which could match the 500-°C isotherm beneath the ridge axis.

413 citations


Journal ArticleDOI
26 Jun 2003-Nature
TL;DR: Observations of the Gakkel ridge demonstrate that the extent of mantle melting is not a simple function of spreading rate: mantle temperatures at depth or mantle chemistry (or both) must vary significantly along-axis.
Abstract: A high-resolution mapping and sampling study of the Gakkel ridge was accomplished during an international ice-breaker expedition to the high Arctic and North Pole in summer 2001. For this slowest-spreading endmember of the global mid-ocean-ridge system, predictions were that magmatism should progressively diminish as the spreading rate decreases along the ridge, and that hydrothermal activity should be rare. Instead, it was found that magmatic variations are irregular, and that hydrothermal activity is abundant. A 300-kilometre-long central amagmatic zone, where mantle peridotites are emplaced directly in the ridge axis, lies between abundant, continuous volcanism in the west, and large, widely spaced volcanic centres in the east. These observations demonstrate that the extent of mantle melting is not a simple function of spreading rate: mantle temperatures at depth or mantle chemistry (or both) must vary significantly along-axis. Highly punctuated volcanism in the absence of ridge offsets suggests that first-order ridge segmentation is controlled by mantle processes of melting and melt segregation. The strong focusing of magmatic activity coupled with faulting may account for the unexpectedly high levels of hydrothermal activity observed.

386 citations


Journal ArticleDOI
20 Feb 2003-Nature
TL;DR: Two quantitative models of ridge melting, mixing and fractionation are extended to show that the addition of water can cause an increase in total melt production and crustal thickness while causing a decrease in mean extent of melting.
Abstract: The formation of basaltic crust at mid-ocean ridges and ocean islands provides a window into the compositional and thermal state of the Earth's upper mantle But the interpretation of geochemical and crustal-thickness data in terms of magma source parameters depends on our understanding of the melting, melt-extraction and differentiation processes that intervene between the magma source and the crust Much of the quantitative theory developed to model these processes has neglected the role of water in the mantle and in magma, despite the observed presence of water in ocean-floor basalts Here we extend two quantitative models of ridge melting, mixing and fractionation to show that the addition of water can cause an increase in total melt production and crustal thickness while causing a decrease in mean extent of melting This may help to resolve several enigmatic observations in the major- and trace-element chemistry of both normal and hotspot-affected ridge basalts

361 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present partial melting experiments at 2-3 GPa on a basaltic pyroxenite (G2) similar in composition to typical oceanic crust.
Abstract: [1] We present partial melting experiments at 2–3 GPa on a basaltic pyroxenite (G2) similar in composition to typical oceanic crust. The 3.0 GPa solidus is located at 1310 ± 12°C and the liquidus is 1500–1525°C. Clinopyroxene, garnet, quartz, and rutile are subsolidus phases. Garnet, quartz, and rutile are absent above 1475°C, 1365°C, and 1335°C, respectively. At the solidus, the garnet mode is low (18 wt.%) because clinopyroxene is unusually aluminous (13.8–15.5 wt.% Al2O3). In adiabatically upwelling mantle near 2–3 GPa, G2-like pyroxenite begins melting 35–50 km deeper than peridotite. The calculated near-solidus adiabatic productivity for G2 is ∼13%/GPa and averages ∼59%/GPa through the melting interval, suggesting substantial partial melting deep in basalt source regions: G2 is ∼60% molten at the 3 GPa peridotite solidus. Small percentages of pyroxenite in the source significantly affect oceanic crust production and composition, as the proportion of pyroxenite-derived melt contributed to oceanic crust formation is 5 to >10 times the pyroxenite proportion in the source. Given the overall depleted isotopic character of mid-ocean ridge basalt (MORB), oversampling of fertile G2-like pyroxenite limits the abundance of such lithologies to ∼<2% of the MORB source. Owing to high extents of partial melting, the effect of modest amounts of pyroxenite on Sm/Yb ratios of aggregated basalts is limited and depends largely on the average bulk composition of the pyroxenite source. Low near-solidus adiabatic productivities could allow small (∼1–2%) proportions of basaltic pyroxenite to enhance (230Th)/(238U) in oceanic basalts without requiring marked shifts in other indicators of heterogeneity, such as Sr or Pb isotopes.

342 citations


Journal ArticleDOI
TL;DR: In terms of causative processes, continental rifting may be explained by both active or passive mechanisms, which also differ in the volume of magmatic products and in the rheological properties and stratification of the extending lithosphere as mentioned in this paper.

322 citations


Journal ArticleDOI
TL;DR: In this article, deformed rocks sampled from a corrugated detachment fault surface near the Mid-Atlantic Ridge (15°45′N) constrain the conditions of deformation and strain localization.
Abstract: [1] Deformed rocks sampled from a corrugated detachment fault surface near the Mid-Atlantic Ridge (15°45′N) constrain the conditions of deformation and strain localization Samples recovered in situ record deformation restricted to the cold (shallow) lithosphere (greenschist facies), with no evidence for significant high-temperature deformation either at the fault zone or in the footwall near it High-temperature deformation (∼720–750°C) is observed only at two sites, and cannot be directly linked to the detachment Detachment faulting was coeval with dyke intrusions that cross cut it, as demonstrated by the presence of undeformed and highly deformed diabase found in shear zones, and by the presence of chill margins in diabase against fault rock Basalts are very scarce and restricted to clasts in breccias, with no evidence of pillows or extrusive structures Gabbros crop out along mass-wasted and fault scarps structurally below the detachment Footwall rocks show little or no deformation, due to strain localization along a narrow shear zone (<200 m) with fluid flow, as required to form talc- and amphibole schists after an ultramafic protolith We speculate that the alteration front in a heterogeneous lithosphere may be a rheological boundary that may localize deformation during long periods of time Our observations and other geological evidence elsewhere suggest that this detachment model limited to the cold (shallow) lithosphere is applicable to other corrugated surfaces along slow- and intermediate-spreading ridges These observations preclude detachment models rooting in melt-rich zones (ie, Atlantis Bank, Southwest Indian Ridge) or recording high-temperature deformation We infer that oceanic detachment faults (1) localize strain at T < 500–300°C, (2) persist during active magmatism, and (3) root at shallow rheological boundaries, such as a melt-rich zone or magma chamber (“hot” detachments) or an alteration front (“cold” detachments)

265 citations


Journal ArticleDOI
01 Mar 2003
TL;DR: In this paper, the authors examine the case presented by Hanan et al. [2000] and conclude that their arguments are flawed and show that the data plot in their NMORB field on an eHf versus eNd diagram.
Abstract: [1] Icelandic basalt ranges in composition from voluminous tholeiite, erupted in the rift zones, to small-volume, mildly alkaline basalt erupted off-axis. In addition, small-volume flows of primitive basalt, highly depleted in incompatible elements, are sometimes found in the actively spreading rift axes. Relative incompatible-element depletion or enrichment in Icelandic basalt is correlated with variation in radiogenic isotope ratios, implying that the mantle beneath Iceland is heterogeneous and that the relative contribution of the various mantle components relates to eruption environment (on- or off-axis) and hence to degree of melting. Thus small-degree off-axis melting preferentially samples an enriched and more fusible mantle component, whereas more extensive melting beneath the rift axes produces magma that more closely represents the bulk Iceland plume mantle composition. The small-volume flows of depleted basalt represent melts that have preferentially sampled a depleted and more refractory mantle component. A debate has arisen over the nature of the depleted component in the Iceland plume. Some authors [e.g., Hanan and Schilling, 1997] argue that the depleted component is ambient upper mantle, the source of normal mid-ocean ridge basalt (NMORB) in this region. Others [e.g., Thirlwall, 1995; Kerr et al., 1995; Fitton et al., 1997], however, have used various lines of evidence to suggest that the plume contains an intrinsic depleted component that is distinct from the NMORB source. Hanan et al. [2000] attempt to refute the existence of a depleted Iceland plume (DIP) component through a critical evaluation of the Nb-Zr-Y arguments advanced by Fitton et al. [1997] and the Hf-Nd-isotopic evidence presented by Kempton et al. [1998]. In this paper we examine the case presented by Hanan et al. [2000] and conclude that their arguments are flawed. Firstly, their trace-element data set excludes data from depleted Icelandic basalt samples and so it is not surprising that they find no evidence for a DIP component. Secondly, they present two new Hf-isotope analyses of a single depleted Icelandic basalt sample and show that the data plot in their NMORB field on an eHf versus eNd diagram. However, new data allow the resolution of distinct NMORB and depleted Icelandic basalt fields on this diagram. We conclude that trace-element and radiogenic isotope data from Iceland require the existence of a DIP component.

264 citations


Journal ArticleDOI
03 Jan 2003-Science
TL;DR: Results demonstrate that the 65°C fluids from 3.5-million-year-old ocean crust support microbial growth and Ribosomal RNA gene sequence data indicate the presence of diverse Bacteria and Archaea, all consistent with fluid chemistry.
Abstract: Little is known about the potential for life in the vast, low-temperature (<100 degrees C) reservoir of fluids within mid-ocean ridge flank and ocean basin crust. Recently, an overpressured 300-meter-deep borehole was fitted with an experimental seal (CORK) delivering crustal fluids to the sea floor for discrete and large-volume sampling and characterization. Results demonstrate that the 65 degrees C fluids from 3.5-million-year-old ocean crust support microbial growth. Ribosomal RNA gene sequence data indicate the presence of diverse Bacteria and Archaea, including gene clones of varying degrees of relatedness to known nitrate reducers (with ammonia production), thermophilic sulfate reducers, and thermophilic fermentative heterotrophs, all consistent with fluid chemistry.

264 citations


Journal ArticleDOI
24 Apr 2003-Nature
TL;DR: Volatile data from this event and an earlier one at 9° N on the East Pacific Rise show that such magmatic events can have profound and rapid effects on fluid–mineral equilibria, phase separation, 3He/heat ratios and fluxes of volatiles from submarine hydrothermal systems.
Abstract: The Endeavour segment of the Juan de Fuca ridge is host to one of the most vigorous hydrothermal areas found on the global mid-ocean-ridge system, with five separate vent fields located within 15 km along the top of the ridge segment1. Over the past decade, the largest of these vent fields2, the ‘Main Endeavour Field’, has exhibited a constant spatial gradient in temperature and chloride concentration in its vent fluids, apparently driven by differences in the nature and extent of subsurface phase separation3. This stable situation was disturbed on 8 June 1999 by an earthquake swarm4. Owing to the nature of the seismic signals and the lack of new lava flows observed in the area during subsequent dives of the Alvin and Jason submersibles (August–September 1999), the event was interpreted to be tectonic in nature4. Here we show that chemical data from hydrothermal fluid samples collected in September 1999 and June 2000 strongly suggest that the event was instead volcanic in origin. Volatile data from this event and an earlier one at 9° N on the East Pacific Rise show that such magmatic events can have profound and rapid effects on fluid–mineral equilibria, phase separation, 3He/heat ratios and fluxes of volatiles from submarine hydrothermal systems.

Journal ArticleDOI
06 Feb 2003-Nature
TL;DR: Results of swath mapping, heat flow, geochemistry and seismic surveys from the young eastern flank of the Juan de Fuca ridge show that isolated basement outcrops penetrating through thick sediments guide hydrothermal discharge and recharge between sites separated by more than 50 km.
Abstract: Hydrothermal circulation within the sea floor, through lithosphere older than one million years (Myr), is responsible for 30% of the energy released from plate cooling, and for 70% of the global heat flow anomaly (the difference between observed thermal output and that predicted by conductive cooling models)1,2. Hydrothermal fluids remove significant amounts of heat from the oceanic lithosphere for plates typically up to about 65 Myr old3,4. But in view of the relatively impermeable sediments that cover most ridge flanks5, it has been difficult to explain how these fluids transport heat from the crust to the ocean. Here we present results of swath mapping, heat flow, geochemistry and seismic surveys from the young eastern flank of the Juan de Fuca ridge, which show that isolated basement outcrops penetrating through thick sediments guide hydrothermal discharge and recharge between sites separated by more than 50 km. Our analyses reveal distinct thermal patterns at the sea floor adjacent to recharging and discharging outcrops. We find that such a circulation through basement outcrops can be sustained in a setting of pressure differences and crustal properties as reported in independent observations and modelling studies.

01 Apr 2003
TL;DR: Numerical models of plate separation, dyke intrusion and faulting require at least two distinct mechanisms of fault formation at ridges to explain a large range of fault sizes and orientations.
Abstract: Abyssal-hill-bounding faults that pervade the oceanic crust are the most common tectonic feature on the surface of the Earth. The recognition that these faults form at plate spreading centres came with the plate tectonic revolution. Recent observations reveal a large range of fault sizes and orientations; numerical models of plate separation, dyke intrusion and faulting require at least two distinct mechanisms of fault formation at ridges to explain these observations. Plate unbending with distance from the top of an axial high reproduces the observed dip directions and offsets of faults formed at fast-spreading centres. Conversely, plate stretching, with differing amounts of constant-rate magmatic dyke intrusion, can explain the great variety of fault offset seen at slow-spreading ridges. Very-large-offset normal faults only form when about half the plate separation at a ridge is accommodated by dyke intrusion.

Journal ArticleDOI
TL;DR: In this article, a simple thermal evolution model with monotonic cooling of the planet due to stagnant lid mantle convection underneath a single plate throughout the evolution can better reconcile early crust formation and magnetic field generation.
Abstract: [1] The consequences of an early epoch of plate tectonics on Mars followed by single-plate tectonics with stagnant lid mantle convection on both crust production and magnetic field generation have been studied with parameterized mantle convection models. Thermal history models with parameterized mantle convection, not being dynamo models, can provide necessary, but not sufficient, conditions for dynamo action. It is difficult to find early plate tectonics models that can reasonably explain crust formation, as is required by geological and geophysical observations, and allow an early magnetic field that is widely accepted as the cause for the observed magnetic anomalies. Dating of crust provinces and topography and gravity data suggest a crust production rate monotonically declining through the Noachian and Hesperian and a present-day crust thickness of more than 50 km. Plate tectonics cools the mantle and core efficiently, and the core may easily generate an early magnetic field. Given a sufficiently weak mantle rheology, plate tectonics can explain a field even if the core is not initially superheated with respect to the mantle. Because the crust production rate is proportional to temperature, however, an early efficient cooling will frustrate later crust production and therefore cannot explain, for example, the absence of prominent magnetic anomalies in the northern crustal province and the northern volcanic plains in the Early Hesperian. Voluminous crust formation following plate tectonics is possible if plate tectonics heat transfer is inefficient but then the crust growth rate has a late peak (about 2 Ga b.p.), which is not observed. These models also require a substantial initial superheating of the core to allow a dynamo. If one accepts the initial superheating, then, as we will show, a simple thermal evolution model with monotonic cooling of the planet due to stagnant lid mantle convection underneath a single plate throughout the evolution can better reconcile early crust formation and magnetic field generation.

Journal ArticleDOI
TL;DR: The Oceanic Plateau model as mentioned in this paper suggests that lateral compositional buoyancy contrast within the oceanic lithosphere creates the favored and necessary condition for subduction initiation, which is not unique to oceanic plateaux.
Abstract: Tonga and Mariana fore-arc peridotites, inferred to represent their respective sub-arc mantle lithospheres, are compositionally highly depleted (low Fe/Mg) and thus physically buoyant relative to abyssal peridotites representing normal oceanic lithosphere (high Fe/Mg) formed at ocean ridges. The observation that the depletion of these fore-arc lithospheres is unrelated to, and pre-dates, the inception of present-day western Pacific subduction zones demonstrates the pre-existence of compositional buoyancy contrast at the sites of these subduction zones. These observations allow us to suggest that lateral compositional buoyancy contrast within the oceanic lithosphere creates the favoured and necessary condition for subduction initiation. Edges of buoyant oceanic plateaux, for example, mark a compositional buoyancy contrast within the oceanic lithosphere. These edges under deviatoric compression (e.g. ridge push) could develop reverse faults with combined forces in excess of the oceanic lithosphere strength, allowing the dense normal oceanic lithosphere to sink into the asthenosphere beneath the buoyant overriding oceanic plateaux, i.e. the initiation of subduction zones. We term this concept the ‘oceanic plateau model’. This model explains many other observations and offers testable hypotheses on important geodynamic problems on a global scale. These include (1) the origin of the 43Ma bend along the Hawaii‐ Emperor Seamount Chain in the Pacific, (2) mechanisms of ophiolite emplacement, (3) continental accretion, etc. Subduction initiation is not unique to oceanic plateaux, but the plateau model well illustrates the importance of the compositional buoyancy contrast within the lithosphere for subduction initiation. Most portions of passive continental margins, such as in the Atlantic where large compositional buoyancy contrast exists, are the loci of future subduction zones.

Journal ArticleDOI
16 Jan 2003-Nature
TL;DR: Evidence for active hydrothermal venting on the Gakkel ridge is presented, which is the slowest spreading and least explored mid-ocean ridge and requires a reassessment of the geologic conditions that control hydroThermal circulation on ultraslow-spreading ridges.
Abstract: Submarine hydrothermal venting along mid-ocean ridges is an important contributor to ridge thermal structure, and the global distribution of such vents has implications for heat and mass fluxes from the Earth's crust and mantle and for the biogeography of vent-endemic organisms Previous studies have predicted that the incidence of hydrothermal venting would be extremely low on ultraslow-spreading ridges (ridges with full spreading rates <2 cm yr-1—which make up 25 per cent of the global ridge length), and that such vent systems would be hosted in ultramafic in addition to volcanic rocks Here we present evidence for active hydrothermal venting on the Gakkel ridge, which is the slowest spreading (06–13 cm yr-1) and least explored mid-ocean ridge On the basis of water column profiles of light scattering, temperature and manganese concentration along 1,100 km of the rift valley, we identify hydrothermal plumes dispersing from at least nine to twelve discrete vent sites Our discovery of such abundant venting, and its apparent localization near volcanic centres, requires a reassessment of the geologic conditions that control hydrothermal circulation on ultraslow-spreading ridges

Journal ArticleDOI
TL;DR: The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur.

Journal ArticleDOI
TL;DR: The ODP Hole 801C at Site 801 as mentioned in this paper was the first to report significant changes in seawater-basalt interaction over time, showing that the incorporation of oxidized organic carbon from intercalated sediments and changes in the [delta]13C of seawater over time.

Journal ArticleDOI
16 Jan 2003-Nature
TL;DR: It is deduced that shallow subduction and recycling of oceanic crust took place in the early Archaean, and that this would have resulted in strong depletion of only a thin layer of the uppermost mantle, leading to the misfit between geochemical depletion models and geophysical models for mantle convection.
Abstract: The Archaean oceanic crust was probably thicker than present-day oceanic crust owing to higher heat flow and thus higher degrees of melting at mid-ocean ridges1. These conditions would also have led to a different bulk composition of oceanic crust in the early Archaean, that would probably have consisted of magnesium-rich picrite (with variably differentiated portions made up of basalt, gabbro, ultramafic cumulates and picrite). It is unclear whether these differences would have influenced crustal subduction and recycling processes, as experiments that have investigated the metamorphic reactions that take place during subduction have to date considered only modern mid-ocean-ridge basalts2,3. Here we present data from high-pressure experiments that show that metamorphism of ultramafic cumulates and picrites produces pyroxenites, which we infer would have delaminated and melted to produce basaltic rocks, rather than continental crust as has previously been thought. Instead, the formation of continental crust requires subduction and melting of garnet-amphibolite4—formed only in the upper regions of oceanic crust—which is thought to have first occurred on a large scale during subduction in the late Archaean5. We deduce from this that shallow subduction and recycling of oceanic crust took place in the early Archaean, and that this would have resulted in strong depletion of only a thin layer of the uppermost mantle. The misfit between geochemical depletion models and geophysical models for mantle convection (which include deep subduction) might therefore be explained by continuous deepening of this depleted layer through geological time5,6.

Book ChapterDOI
E.M. Klein1
TL;DR: In this paper, the authors present a survey of geochromatic variations in lava compositions, including the shape of the melting regime, the generation of diverse melt compositions, and the transformation of pyroxenite melting.
Abstract: 3.13.4 WORLDWIDE GEOCHEMICAL VARIATIONS AMONG OCEAN RIDGE BASALTS 437 3.13.4.1 Crystallization 438 3.13.4.1.1 Major elements 438 3.13.4.1.2 Trace elements 438 3.13.4.1.3 Correcting for crystallization 443 3.13.4.2 Melting 444 3.13.4.2.1 Major elements 444 3.13.4.2.2 Trace elements 446 3.13.4.2.3 The shape of the melting regime and the generation of diverse melt compositions 447 3.13.4.3 Mantle Heterogeneity 447 3.13.4.3.1 Pyroxenite melting 448 3.13.4.3.2 Assimilation of altered crust 449 3.13.4.3.3 Local trends in basalt composition 450 3.13.4.4 Spatial Variations in Lava Compositions 451 3.13.4.4.1 Along-axis chemical variations 451 3.13.4.4.2 Temporal variations on lava composition 454


Journal ArticleDOI
TL;DR: The SIGMA III transect, located ∼600 km south of the Greenland-Iceland Ridge and the presumed track of the Iceland hot spot, shows that the continent-ocean transition is abrupt and only a small amount of crustal thinning occurred prior to final breakup as mentioned in this paper.
Abstract: [1] Seismic reflection and refraction data from the SE Greenland margin provide a detailed view of a volcanic rifted margin from Archean continental crust to near-to-average oceanic crust over a spatial scale of 400 km. The SIGMA III transect, located ∼600 km south of the Greenland-Iceland Ridge and the presumed track of the Iceland hot spot, shows that the continent-ocean transition is abrupt and only a small amount of crustal thinning occurred prior to final breakup. Initially, 18.3 km thick crust accreted to the margin and the productivity decreased through time until a steady state ridge system was established that produced 8–10 km thick crust. Changes in the morphology of the basaltic extrusives provide evidence for vertical motions of the ridge system, which was close to sea level for at least 1 m.y. of subaerial spreading despite a reduction in productivity from 17 to 13.5 km thick crust over this time interval. This could be explained if a small component of active upwelling associated with thermal buoyancy from a modest thermal anomaly provided dynamic support to the rift system. The thermal anomaly must be exhaustible, consistent with recent suggestions that plume material was emplaced into a preexisting lithospheric thin spot as a thin sheet. Exhaustion of the thin sheet led to rapid subsidence of the spreading system and a change from subaerial, to shallow marine, and finally to deep marine extrusion in ∼2 m.y. is shown by the morphological changes. In addition, comparison to the conjugate Hatton Bank shows a clear asymmetry in the early accretion history of North Atlantic oceanic crust. Nearly double the volume of material was emplaced on the Greenland margin compared to Hatton Bank and may indicate east directed ridge migration during initial opening.

Book ChapterDOI
01 Jan 2003
TL;DR: A mid-Paleogenean to early Eocene encounter between an oceanic spreading center and a subduction zone produced a wide range of geologic features in Alaska as discussed by the authors.
Abstract: A mid-Paleocene to early Eocene encounter between an oceanic spreading center and a subduction zone produced a wide range of geologic features in Alaska. The most striking effects are seen in the accretionary prism (Chugach-Prince William terrane), where 61 to 50 Ma near-trench granitic to gabbroic plutons were intruded into accreted trench sediments that had been deposited only a few million years earlier. This short time interval also saw the genesis of ophiolites, some of which contain syngenetic massive sulfide deposits; the rapid burial of these ophiolites beneath trench turbidites, followed immediately by obduction; anomalous high-T, low-P, near-trench metamorphism; intense ductile deformation; motion on transverse strike-slip and normal faults; gold mineralization; and uplift of the accretionary prism above sea level. The magmatic arc experienced a brief flare-up followed by quiescence. In the Alaskan interior, 100 to 600 km landward of the paleotrench, several Paleocene to Eocene sedimentary basins underwent episodes of extensional subsidence, accompanied by bimodal volcanism. Even as far as 1000 km inboard of the paleotrench, the ancestral Brooks Range and its foreland basin experienced a pulse of uplift that followed about 40 million years of quiescence. All of these events-but most especially those in the accretionary prism-can be attributed with varying degrees of confidence to the subduction of an oceanic spreading center. In this model, the ophiolites and allied ore deposits were produced at the soon-to-be subducted ridge. Near-trench magmatism, metamorphism, deformation, and gold mineralization took place in the accretionary prism above a slab window, where hot asthenosphere welled up into the gap between the two subducted, but still diverging, plates. Deformation took place as the critically tapered accretionary prism adjusted its shape to changes in the bathymetry of the incoming plate, changes in the convergence direction before and after ridge subduction, and changes in the strength of the prism as it was heated and then cooled. In this model, events in the Alaskan interior would have taken place above more distal, deeper parts of the slab window. Extensional (or transtensional) basin subsidence was driven by the two subducting plates that each exerted different tractions on the upper plate. The magmatic lull along the arc presumably marks a time when hydrated lithosphere was not being subducted beneath the arc axis. The absence of a subducting slab also may explain uplift of the Brooks Range and North Slope: Geodynamic models predict that long-wavelength uplift of this magnitude will take place far inboard from Andean-type margins when a subducting slab is absent. Precise correlations between events in the accretionary prism and the Alaskan interior are hampered, however, by palinspastic problems. During and since the early Tertiary, margin-parallel strike-slip faulting has offset the near-trench plutonic belt-i.e., the very basis for locating the triple junction and slab window-from its backstop, by an amount that remains controversial. Near-trench magmatism began at 61 Ma at Sanak Island in the west but not until 51 Ma at Baranof Island, 2200 km to the east. A west-to-east age progression suggests migration of a trench-ridge-trench triple junction, which we term the Sanak-Baranof triple junction. Most workers have held that the subducted ridge separated the Kula and Farallon plates. As a possible alternative, we suggest that the ridge may have separated the Kula plate from another oceanic plate to the east, which we have termed the Resurrection plate.

Journal ArticleDOI
26 Jun 2003-Nature
TL;DR: S seismic evidence is presented for the presence of exceptionally thin crust along the Gakkel ridge rift valley with crustal thicknesses varying between 1.9 and 3.3 km, implying that these magma production and transport systems have been stable over this timescale.
Abstract: Most models of melt generation beneath mid-ocean ridges predict significant reduction of melt production at ultraslow spreading rates (full spreading rates &<20 mm x yr(-1)) and consequently they predict thinned oceanic crust. The 1,800-km-long Arctic Gakkel mid-ocean ridge is an ideal location to test such models, as it is by far the slowest portion of the global mid-ocean-ridge spreading system, with a full spreading rate ranging from 6 to 13 mm x yr(-1) (refs 4, 5). Furthermore, in contrast to some other ridge systems, the spreading direction on the Gakkel ridge is not oblique and the rift valley is not offset by major transform faults. Here we present seismic evidence for the presence of exceptionally thin crust along the Gakkel ridge rift valley with crustal thicknesses varying between 1.9 and 3.3 km (compared to the more usual value of 7 km found on medium- to fast-spreading mid-ocean ridges). Almost 8,300 km of closely spaced aeromagnetic profiles across the rift valley show the presence of discrete volcanic centres along the ridge, which we interpret as evidence for strongly focused, three-dimensional magma supply. The traces of these eruptive centres can be followed to crustal ages of approximately 25 Myr off-axis, implying that these magma production and transport systems have been stable over this timescale.

Journal ArticleDOI
TL;DR: In this article, the authors predict that the width over which plumes expand along the ridge axis increases with plume flux and excess buoyancy and decreases with plate spreading rate, plume viscosity, and plume-ridge separation.
Abstract: [1] Hot spot–mid-ocean ridge interactions cause many of the largest structural and chemical anomalies in Earth's ocean basins. Correlated geophysical and geochemical anomalies are widely explained by mantle plumes that deliver hot and compositionally distinct material toward and along mid-ocean ridges. Compositional anomalies are seen in trace element and isotope ratios, while elevated mantle temperatures are suggested by anomalously thick crust, low-density mantle, low mantle seismic velocities, and elevated degrees and pressures of melting. Several geodynamic laboratory and modeling studies predict that the width over which plumes expand along the ridge axis increases with plume flux and excess buoyancy and decreases with plate spreading rate, plume viscosity, and plume-ridge separation. Key aspects of the theoretical predictions are supported by observations at several prominent hot spot–ridge systems. Still, many basic aspects of plume-ridge interaction remain enigmatic. Outstanding problems pertain to whether plumes flow toward and along mid-ocean ridges in narrow pipe-like channels or as broad expanding gravity currents, the origin of geochemical mixing trends observed along ridges, and how mantle plumes alter the geometry of the mid-ocean ridge plate boundary, as well as the origin of other ridge axis anomalies not obviously related to mantle plumes.

Journal ArticleDOI
TL;DR: In this article, the authors define a global scale fluid reservoir residing within the uppermost igneous oceanic crust, a region of seafloor that is both warm and may harbor a substantial biosphere.

Journal ArticleDOI
TL;DR: In this article, the role of high quality U-series isotope data has been discussed in obtaining precise information on time scales and the development of quantitative physical models for convergent margin magmatism.
Abstract: Convergent margins (oceanic and continental arcs) form one of the Earth’s key mass transfer locations, being sites where melting and transfer of new material to the Earth’s crust occurs and also where crustal materials, including water, are recycled back into the mantle. Volcanism in this tectonic setting constitutes ~15% (0.4–0.6 km3/yr) of the total global output (Crisp 1984) and the composition of the erupted magmas is, on average, similar to that of the continental crust (Taylor and McLennan 1981). Moreover, many arc volcanoes have been responsible for the most hazardous, historic volcanic eruptions. Yet, despite their importance, many fundamental aspects of convergent margin magmatism remain poorly understood. Key among these are the rates of processes of fluid addition from the subducting plate. Furthermore, in stark contrast to the ocean ridges, where adiabatic decompression provides a simple and robust physical model for partial melting, no consensus has yet been reached about the physics of the partial melting process and the mechanism of melt extraction beneath arcs. Preceding chapters concerned with partial melting in this volume (Lundstrom 2003; Bourdon and Sims 2003) have discussed how the differing half-lives and distribution coefficients of the various U-series nuclides result in disequilibria through in-growth. This provides important information on the nature and timing of mantle partial melting processes. In convergent margin settings the differential fluid mobility of U and Ra relative to Th and Pa provides an additional source of fractionation leading to in-growth and this is crucial to understanding the timing and mechanisms of fluid addition. Here we review the role that the proliferation of high quality U-series isotope data, over the last decade, have had in obtaining precise information on time scales and the development of quantitative physical models for convergent margin magmatism. Our approach is to use trace element …

Journal ArticleDOI
01 Mar 2003-Geology
TL;DR: In this paper, pressure-temperature (P-T) estimates of kyanite-bearing eclogites throughout the zone give temperatures of 590-750 degreesC at minimum pressures of 20 kbar.
Abstract: Precambrian eclogites, metagabbros, and gabbros occur in an similar to200-km-long by 40-km-wide zone in central Zambia. Pressure-temperature (P-T) estimates of kyanite-bearing eclogites (kyanite eclogites) throughout the zone give temperatures of 590-750 degreesC at minimum pressures of 20 kbar. Phengite-bearing eclogites equilibrated at 720-755 degreesC and 26-28 kbar and show evidence for a clockwise P-T path. These P-T conditions imply a low geothermal gradient of similar to8 degreesC/km and a subduction depth of similar to90 km. The eclogites, metagabbros, and gabbros show incompatible element patterns similar to those of recent mid-oceanic-ridge basalts, and thus are interpreted to represent former oceanic crust. The low geothermal gradient indicates a cold subducted oceanic lithosphere, implying long-lived, fast convergence and a relatively large (>1000 km) associated ocean basin. A Sm-Nd isochron defines an age of 595 +/- 10 Ma for the eclogite facies metamorphism. These results imply that a Neoproterozoic suture zone exists between the Congo and Kalahari cratons. Suturing occurred during the same orogenic cycle that formed the Zambezi belt and is related to the assembly of Gondwana.

Journal ArticleDOI
TL;DR: In this paper, multiple and single-beam bathymetric data are compiled over the Azores plateau to produce a 1 km × 1 km grid between latitudes 32°N and 49°N, and longitudes 22°W and 43°W.
Abstract: [1] Multiple- and single-beam bathymetric data are compiled over the Azores plateau to produce a 1 km × 1 km grid between latitudes 32°N and 49°N and longitudes 22°W and 43°W. Mantle Bouguer anomalies are then calculated from this grid and the satellite-derived gravity. These grids provide new insights on the temporal and spatial variations of melt supply to the ridge axis. The elevated seafloor of the Azores plateau is interpreted as resulting from the interaction of a mantle plume with the Mid-Atlantic Ridge (MAR). The presence of a large region of elevated seafloor associated with a thick crust between the Great Meteor Seamounts and the Azores platform on the Africa plate, and less developed conjugate structures on the North America plate, favors genetic relations between these hot spot-derived structures. This suggests that a ridge-hot spot interaction has occurred in this region since 85 Ma. This interaction migrated northward along the ridge axis as a result of the SSE absolute motion of the Africa plate, following a direction grossly parallel to the orientation of the MAR. Kinematic reconstructions from chron 13 (∼35 Ma) to the present allow a proposal that the formation of the Azores plateau began around 20 Ma and ended around 7 Ma. A sharp bathymetric step is associated with the beginning of important melt supply around 20 Ma. The excess of melt production is controlled by the interaction of the ridge and hot spot melting zones. The geometry and distribution of the smaller-scale features on the plateau record episodic variations of the hot spot melt production. The periodicity of these variations is about 3–5 Myr. Following the rapid decrease of widespread volcanism, the plateau was subsequently rifted from north to south by the Mid-Atlantic Ridge since 7 Ma. This rifting begins when the MAR melting zone is progressively shifted away from the 200-km plume thermal anomaly. These results bear important consequences on the motion of the Africa plate relative to the Azores hot spot. They also provide an explanation to the asymmetric geochemical signature of the Azores hot spot along the Mid-Atlantic Ridge.

Journal ArticleDOI
TL;DR: A suite of 53 samples of mantle spinel lherzolites and harzburgites dredged at 13 sites between 52°E and 68°E along the Southwest Indian Ridge has been studied for petrography and mineral major element chemistry as mentioned in this paper.
Abstract: A suite of 53 samples of mantle spinel lherzolites and harzburgites dredged at 13 sites between 52°E and 68°E along the Southwest Indian Ridge has been studied for petrography and mineral major element chemistry. Results show that the residual mantle beneath this very slow-spreading/cold ridge is strongly heterogeneous in modal and mineral compositions at local and regional scales and underwent greater extents of melting than predicted by melting model and by compositions of the basalts dredged with the peridotites. Along-axis, the peridotite compositional variability defines a concave pattern with increasing depletion at both ends of the studied section (e.g., approaching Rodrigues Triple Junction to the East and Gallieni fracture zone to the west) that cannot be matched with the basalt compositions. Clinoyroxenes reflect depleted compositions (low modal abundances, high Cr and Mg, low Ti contents) but are paradoxally enriched in jadeite component, a feature that distinguishes these peridotites from common abyssal peridotites. Textural data show that major depletion in basaltic components and pyroxene Na enrichment are early features of the studied peridotites. In most samples, Na is nevertheless correlated with Ti suggesting that initial clinopyroxenes had high Na/Ti contents. Samples at both ends of the studied area have even higher Na/Ti ratios because of higher Na enrichment and higher Ti depletion, indicating metasomatic interaction. We conclude that along-axis compositional variations characterizing these peridotites are primary controlled by major element heterogeneity in the initial mantle, that have been preserved because of low degrees of melting beneath the Southwest Indian Ridge.