scispace - formally typeset
Search or ask a question

Showing papers on "Planetary system published in 2011"


Journal ArticleDOI
TL;DR: SDSS-III as mentioned in this paper is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars.
Abstract: Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS DR8 (which occurred in Jan 2011). This paper presents an overview of the four SDSS-III surveys. BOSS will measure redshifts of 1.5 million massive galaxies and Lya forest spectra of 150,000 quasars, using the BAO feature of large scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z 100 per resolution element), H-band (1.51-1.70 micron) spectra of 10^5 evolved, late-type stars, measuring separate abundances for ~15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. MARVELS will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m/s, ~24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. (Abridged)

2,265 citations


Journal ArticleDOI
TL;DR: SDSS-III as discussed by the authors is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars.
Abstract: Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS DR8 (which occurred in Jan 2011). This paper presents an overview of the four SDSS-III surveys. BOSS will measure redshifts of 1.5 million massive galaxies and Lya forest spectra of 150,000 quasars, using the BAO feature of large scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z 100 per resolution element), H-band (1.51-1.70 micron) spectra of 10^5 evolved, late-type stars, measuring separate abundances for ~15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. MARVELS will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m/s, ~24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. (Abridged)

2,012 citations


Journal ArticleDOI
TL;DR: In this article, the authors characterize the dynamical properties of these candidate multi-planet systems and find that virtually all candidate systems are stable, as tested by numerical integrations that assume a nominal mass-radius relationship.
Abstract: About one-third of the ~1200 transiting planet candidates detected in the first four months of Kepler data are members of multiple candidate systems. There are 115 target stars with two candidate transiting planets, 45 with three, 8 with four, and 1 each with five and six. We characterize the dynamical properties of these candidate multi-planet systems. The distribution of observed period ratios shows that the vast majority of candidate pairs are neither in nor near low-order mean-motion resonances. Nonetheless, there are small but statistically significant excesses of candidate pairs both in resonance and spaced slightly too far apart to be in resonance, particularly near the 2:1 resonance. We find that virtually all candidate systems are stable, as tested by numerical integrations that assume a nominal mass-radius relationship. Several considerations strongly suggest that the vast majority of these multi-candidate systems are true planetary systems. Using the observed multiplicity frequencies, we find that a single population of planetary systems that matches the higher multiplicities underpredicts the number of singly transiting systems. We provide constraints on the true multiplicity and mutual inclination distribution of the multi-candidate systems, revealing a population of systems with multiple super-Earth-size and Neptune-size planets with low to moderate mutual inclinations.

847 citations


Journal ArticleDOI
TL;DR: In this article, the authors present new and archival high angular resolution (03 40-75 AU) Submillimeter Array (SMA) observations of the 880 μm (340 GHz) dust continuum emission from 12 transition disks in nearby star-forming regions.
Abstract: Circumstellar disks are thought to experience a rapid transition phase in their evolution that can have a considerable impact on the formation and early development of planetary systems. We present new and archival high angular resolution (03 40-75 AU) Submillimeter Array (SMA) observations of the 880 μm (340 GHz) dust continuum emission from 12 such transition disks in nearby star-forming regions. In each case, we directly resolve a dust-depleted disk cavity around the central star. Using two-dimensional Monte Carlo radiative transfer calculations, we interpret these dust disk structures in a homogeneous, parametric model framework by reproducing their SMA continuum visibilities and spectral energy distributions. The cavities in these disks are large (R cav = 15-73 AU) and substantially depleted of small (~μm-sized) dust grains, although their mass contents are still uncertain. The structures of the remnant material at larger radii are comparable to normal disks. We demonstrate that these large cavities are relatively common among the millimeter-bright disk population, comprising at least 1 in 5 (20%) of the disks in the bright half (and ≥26% of the upper quartile) of the millimeter luminosity (disk mass) distribution. Utilizing these results, we assess some of the physical mechanisms proposed to account for transition disk structures. As has been shown before, photoevaporation models do not produce the large cavity sizes, accretion rates, and disk masses representative of this sample. A sufficient decrease of the dust optical depths in these cavities by particle growth would be difficult to achieve: substantial growth (to meter sizes or beyond) must occur in large (tens of AU) regions of low turbulence without also producing an abundance of small particles. Given those challenges, we suggest instead that the observations are most commensurate with dynamical clearing due to tidal interactions with low-mass companions—very young (~1 Myr) brown dwarfs or giant planets on long-period orbits.

779 citations


Journal ArticleDOI
03 Feb 2011-Nature
TL;DR: Kepler spacecraft observations of a single Sun-like star are reported that reveal six transiting planets, five with orbital periods between 10 and 47 days and a sixth planet with a longer period, among the smallest for which mass and size have both been measured.
Abstract: When an extrasolar planet passes in front of (transits) its star, its radius can be measured from the decrease in starlight and its orbital period from the time between transits. Multiple planets transiting the same star reveal much more: period ratios determine stability and dynamics, mutual gravitational interactions reflect planet masses and orbital shapes, and the fraction of transiting planets observed as multiples has implications for the planarity of planetary systems. But few stars have more than one known transiting planet, and none has more than three. Here we report Kepler spacecraft observations of a single Sun-like star, which we call Kepler-11, that reveal six transiting planets, five with orbital periods between 10 and 47 days and a sixth planet with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases. The degree of coplanarity and proximity of the planetary orbits imply energy dissipation near the end of planet formation. NASA's Kepler mission, a space observatory designed to detect and study extrasolar planets that transit across the disk of their host star, has hit the jackpot with the discovery of a six-planet system orbiting a Sun-like star now named Kepler-11. Five of the planets have orbital periods of between 10 and 47 days, and these are among the smallest for which size and mass have both been measured. The sixth and outermost transiting planet has been less well characterized thus far. Only one other star has more than one confirmed transiting planet (Kepler-9, which has three). This newly discovered system resembles our own Solar System in being close to coplanar, but Kepler-11's planets orbit much closer to their star. Kepler is due to continue to return data on Kepler-11 and its planets for some time yet, and it should provide many valuable constraints on models of the formation and evolution of solar systems in general. When an extrasolar planet passes in front of its star (transits), its radius can be measured from the decrease in starlight and its orbital period from the time between transits. This study reports Kepler spacecraft observations of a single Sun-like star that reveal six transiting planets, five with orbital periods between 10 and 47 days plus a sixth one with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases.

755 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a mechanism that can produce such atmospheric deviations from the stellar C/O ratio in protoplanetary disks, where different snowlines of oxygen- and carbon-rich ices, especially water and carbon monoxide, will result in systematic variations in the C /O ratio both in the gas and in the condensed phases.
Abstract: The C/O ratio is predicted to regulate the atmospheric chemistry in hot Jupiters Recent observations suggest that some exoplanets, eg, Wasp 12-b, have atmospheric C/O ratios substantially different from the solar value of 054 In this Letter, we present a mechanism that can produce such atmospheric deviations from the stellar C/O ratio In protoplanetary disks, different snowlines of oxygen- and carbon-rich ices, especially water and carbon monoxide, will result in systematic variations in the C/O ratio both in the gas and in the condensed phases In particular, between the H2O and CO snowlines most oxygen is present in icy grains—the building blocks of planetary cores in the core accretion model—while most carbon remains in the gas phase This region is coincidental with the giant-planet-forming zone for a range of observed protoplanetary disks Based on standard core accretion models of planet formation, gas giants that sweep up most of their atmospheres from disk gas outside of the water snowline will have a C/O ~ 1, while atmospheres significantly contaminated by evaporating planetesimals will have a stellar or substellar C/O when formed at the same disk radius The overall metallicity will also depend on the atmosphere formation mechanism, and exoplanetary atmospheric compositions may therefore provide constraints on where and how a specific planet formed

667 citations


Journal ArticleDOI
John Southworth1
TL;DR: In this paper, the physical properties of 32 transiting extrasolar planet and brown-dwarf systems from existing photometric observations and measured spectroscopic parameters are calculated using the JKTEBOP code, with attention paid to the treatment of limb darkening, contaminating light, orbital eccentricity, correlated noise and numerical integration over long exposure times.
Abstract: I calculate the physical properties of 32 transiting extrasolar planet and brown-dwarf systems from existing photometric observations and measured spectroscopic parameters. The systems studied include fifteen observed by the CoRoT satellite, ten by Kepler and five by the Deep Impact spacecraft. Inclusion of the objects studied in previous papers leads to a sample of 58 transiting systems with homogeneously measured properties. The Kepler data include observations from Quarter 2, and my analyses of several of the systems are the first to be based on short-cadence data from this satellite. The light curves are modelled using the JKTEBOP code, with attention paid to the treatment of limb darkening, contaminating light, orbital eccentricity, correlated noise, and numerical integration over long exposure times. The physical properties are derived from the light curve parameters, spectroscopic characteristics of the host star, and constraints from five sets of theoretical stellar model predictions. An alternative approach using a calibration from eclipsing binary star systems is explored and found to give comparable results whilst imposing a much smaller computational burden. My results are in good agreement with published properties for most of the transiting systems, but discrepancies are identified for CoRoT-5, CoRoT-8, CoRoT-13, Kepler-5 and Kepler-7. Many of the errorbars quoted in the literature are underestimated. Refined orbital ephemerides are given for CoRoT-8 and for the Kepler planets. Asteroseismic constraints on the density of the host stars are in good agreement with the photometric equivalents for HD17156 and TrES-2, but not for HAT-P-7 and HAT-P-11. Complete error budgets are generated for each transiting system, allowing identification of the observations best-suited to improve measurements of their physical properties. Whilst most systems would benefit from further photometry and spectroscopy, HD17156, HD80606, HAT-P-7 and TrES-2 are now extremely well characterised. HAT-P-11 is an exceptional candidate for studying starspots. The orbital ephemerides of some transiting systems are becoming uncertain and they should be re-observed in the near future. The primary results from the current work and from previous papers in the series have been placed in an online catalogue, from where they can be obtained in a range of formats for reference and further study. TEPCat is available at http://www.astro.keele.ac.uk/ jkt/tepcat/

464 citations


Journal ArticleDOI
TL;DR: In a planetary system with two or more well-spaced, eccentric, inclined planets, the innermost planet may gradually become very eccentric and/or inclined as a result of the secular degrees of freedom drifting toward equipartition of angular momentum deficit as discussed by the authors.
Abstract: In a planetary system with two or more well-spaced, eccentric, inclined planets, secular interactions may lead to chaos. The innermost planet may gradually become very eccentric and/or inclined as a result of the secular degrees of freedom drifting toward equipartition of angular momentum deficit. Secular chaos is known to be responsible for the eventual destabilization of Mercury in our own solar system. Here we focus on systems with three giant planets. We characterize the secular chaos and demonstrate the criterion for it to occur, but leave a detailed understanding of secular chaos to a companion paper. After an extended period of eccentricity diffusion, the inner planet's pericenter can approach the star to within a few stellar radii. Strong tidal interactions and ensuing tidal dissipation extract orbital energy from the planet and pull it inward, creating a hot Jupiter. In contrast to other proposed channels for the production of hot Jupiters, such a scenario (which we term "secular migration") explains a range of observations: the pile-up of hot Jupiters at 3 day orbital periods, the fact that hot Jupiters are in general less massive than other radial velocity planets, that they may have misaligned inclinations with respect to stellar spin, and that they have few easily detectable companions (but may have giant companions in distant orbits). Secular migration can also explain close-in planets as low in mass as Neptune; and an aborted secular migration can explain the "warm Jupiters" at intermediate distances. In addition, the frequency of hot Jupiters formed via secular migration increases with stellar age. We further suggest that secular chaos may be responsible for the observed eccentricities of giant planets at larger distances and that these planets could exhibit significant spin-orbit misalignment.

422 citations


Journal ArticleDOI
TL;DR: In this article, the authors used time series spectra obtained during two transit events to determine the wavelength dependence of the planetary radius and measure the exoplanet's atmospheric transmission spectrum for the first time over this wavelength range.
Abstract: We present Hubble Space Telescope (HST) optical and near-ultraviolet transmission spectra of the transiting hot Jupiter HD 189733b, taken with the repaired Space Telescope Imaging Spectrograph (STIS) instrument. The resulting spectra cover the range 2900–5700 A and reach per exposure signal-to-noise ratio levels greater than 11 000 within a 500-A bandwidth. We used time series spectra obtained during two transit events to determine the wavelength dependence of the planetary radius and measure the exoplanet’s atmospheric transmission spectrum for the first time over this wavelength range. Our measurements, in conjunction with existing HST spectra, now provide a broad-band transmission spectrum covering the full optical regime. The STIS data also show unambiguous evidence of a large occulted stellar spot during one of our transit events, which we use to place constraints on the characteristics of the K dwarf’s stellar spots, estimating spot temperatures around T eff ∼ 4250 K. With contemporaneous ground-based photometric monitoring of the stellar variability, we also measure the correlation between the stellar activity level and transit-measured planet-to-star radius contrast, which is in good agreement with predictions. We find a planetary transmission spectrum in good agreement with that of Rayleigh scattering from a high-altitude atmospheric haze as previously found from HST Advanced Camera for Surveys. The high-altitude haze is now found to cover the entire optical regime and is well characterized by Rayleigh scattering. These findings suggest that haze may be a globally dominant atmospheric feature of the planet which would result in a high optical albedo at shorter optical wavelengths.

412 citations


Journal ArticleDOI
TL;DR: In this paper, broad near-infrared H and K-band spectra of the young exoplanet HR8799b have been obtained using the integral field spectrograph OSIRIS, on the Keck II telescope.
Abstract: Using the integral field spectrograph OSIRIS, on the Keck II telescope, broad near-infrared H- and K-band spectra of the young exoplanet HR8799b have been obtained. In addition, six new narrowband photometric measurements have been taken across the H and K bands. These data are combined with previously published photometry for an analysis of the planet's atmospheric properties. Thick photospheric dust cloud opacity is invoked to explain the planet's red near-IR colors and relatively smooth near-IR spectrum. Strong water absorption is detected, indicating a hydrogen-rich atmosphere. Only weak CH4 absorption is detected at K band, indicating efficient vertical mixing and a disequilibrium CO/CH4 ratio at photospheric depths. The H-band spectrum has a distinct triangular shape consistent with low surface gravity. New giant planet atmosphere models are compared to these data with best-fitting bulk parameters, T eff = 1100 K ±100 and log (g) = 3.5 ± 0.5 (for solar composition). Given the observed luminosity (log L obs/L ☉ ~ – 5.1), these values correspond to a radius of 0.75 R Jup +0.17 – 0.12 and a mass of ~0.72 M Jup +2.6 – 0.6—strikingly inconsistent with interior/evolution models. Enhanced metallicity (up to ~10× that of the Sun) along with thick clouds and non-equilibrium chemistry are likely required to reproduce the complete ensemble of spectroscopic and photometric data and the low effective temperatures (<1000 K) required by the evolution models.

394 citations


Posted Content
TL;DR: In this paper, the results of an 8-year survey carried out at the La Silla Observatory with the HARPS spectrograph to detect and characterize planets in the super-Earth and Neptune mass regime were reported.
Abstract: Aims We report on the results of an 8-year survey carried out at the La Silla Observatory with the HARPS spectrograph to detect and characterize planets in the super-Earth and Neptune mass regime Methods The size of our star sample and the precision achieved with HARPS have allowed the detection of a su ciently large number of low-mass planets to study the statistical properties of their orbital elements, the correlation of the host-star metallicity with the planet masses, as well as the occurrence rate of planetary systems around solar-type stars Results A robust estimate of the frequency of systems shows that more than 50% of solar-type stars harbor at least one planet of any mass and with period up to 100 days Di erent properties are observed for the population of planets less massive than about 30 M compared to the population of gaseous giant planets The mass distribution of Super-Earths and Neptune-mass planets (SEN) is strongly increasing between 30 and 15 M The SEN occurence rate does not exhibit a preference for metal rich stars Most of the SEN planets belong to multi-planetary systems The orbital eccentricities of the SEN planets seems limited to 045 At the opposite, the occurence rate of gaseous giant planets is growing with the logarithm of the period, and is strongly increasing with the host-star metallicity About 14 % of solar-type stars have a planetary companion more massive than 50 M on an orbit with a period shorter than 10 years Orbital eccentricities of giant planets are observed up to 09 and beyond Conclusions The precision of HARPS-type spectrographs opens the possibility to detect planets in the habitable zone of solar-type stars Identification of a significant number of super-Earths orbiting solar-type of the Sun vicinity is achieved by Doppler spectroscopy 41 newly discovered planets with HARPS are announced in the Appendix of this paper, among which 16 Super-Earths

Journal ArticleDOI
TL;DR: In this article, the authors show that the very hottest transiting giant planets are qualitatively different from the merely hot Jupiters, and propose an explanation of this trend based on how a planet's radiative and advective times scale with temperature.
Abstract: If both the day-side and night-side effective temperatures of a planet can be measured, it is possible to estimate its Bond albedo, 0 0.8 ?m?to estimate day-side effective temperatures, T d, and thermal phase variations?when available?to estimate night-side effective temperature. We strongly rule out the null hypothesis of a single AB and ? for all 24 planets. If we allow each planet to have different parameters, we find that low Bond albedos are favored (AB 2400 K) have low ?, as opposed to the 18 cooler planets, which show a variety of recirculation efficiencies. This hints that the very hottest transiting giant planets are qualitatively different from the merely hot Jupiters. We propose an explanation of this trend based on how a planet's radiative and advective times scale with temperature: both timescales are expected to be shorter for hotter planets, but the temperature dependence of the radiative timescale is stronger, leading to decreased heat recirculation efficiency.

Journal ArticleDOI
TL;DR: In this article, the radial distribution of dust in disks around a sample of young stars from an observational point of view, and, when possible, in a model-independent way, by using parametric laws.
Abstract: Context. Proto-planetary disks are thought to provide the initial environment for planetary system formation. The dust and gas distribution and its evolution with time is one of the key elements in the process.Aims. We attempt to characterize the radial distribution of dust in disks around a sample of young stars from an observational point of view, and, when possible, in a model-independent way, by using parametric laws.Methods. We used the IRAM PdBI interferometer to provide very high angular resolution (down to 0.4′′ in some sources) observations of the continuum at 1.3 mm and 3 mm around a sample of T Tauri stars in the Taurus-Auriga region. The sample includes single and multiple systems, with a total of 23 individual disks. We used track-sharing observing mode to minimize the biases. We fitted these data with two kinds of models: a “truncated power law” model and a model presenting an exponential decay at the disk edge (“viscous” model).Results. Direct evidence for tidal truncation is found in the multiple systems. The temperature of the mm-emitting dust is constrained in a few systems. Unambiguous evidence for large grains is obtained by resolving out disks with very low values of the dust emissivity index β . In most disks that are sufficiently resolved at two different wavelengths, we find a radial dependence of β , which appears to increase from low values (as low as 0) at the center to about 1.7−2 at the disk edge. The same behavior could apply to all studied disks. It introduces further ambiguities in interpreting the brightness profile, because the regions with apparent β ≈ 0 can also be interpreted as being optically thick when their brightness temperature is high enough. Despite the added uncertainty on the dust absorption coefficient, the characteristic size of the disk appears to increase with a higher estimated star age. Conclusions. These results provide the first direct evidence of the radial dependence of the grain size in proto-planetary disks. Constraints of the surface density distributions and their evolution remain ambiguous because of a degeneracy with the β (r ) law.

Journal ArticleDOI
TL;DR: In this article, the authors used the coronal models of stars to calculate the EUV contribution to the stellar spectra, assuming that thermal losses dominate the mass loss of their atmospheres.
Abstract: Context. The current distribution of planet mass vs. incident stellar X-ray flux supports the idea that photoevaporation of the atmosphere may take place in close-in planets. Integrated effects have to be accounted for. A proper calculation of the mass loss rate through photoevaporation requires the estimation of the total irradiation from the whole XUV (X-rays and extreme ultraviolet, EUV) range. Aims. The purpose of this paper is to extend the analysis of the photoevaporation in planetary atmospheres from the accessible X-rays to the mostly unobserved EUV range by using the coronal models of stars to calculate the EUV contribution to the stellar spectra. The mass evolution of planets can be traced assuming that thermal losses dominate the mass loss of their atmospheres. Methods. We determine coronal models for 82 stars with exoplanets that have X-ray observations available. Then a synthetic spectrum is produced for the whole XUV range (∼1−912 A). The determination of the EUV stellar flux, calibrated with real EUV data, allows us to calculate the accumulated effects of the XUV irradiation on the planet atmosphere with time, as well as the mass evolution for planets with known density. Results. We calibrate for the first time a relation of the EUV luminosity with stellar age valid for late-type stars. In a sample of 109 exoplanets, few planets with masses larger than ∼1.5 MJ receive high XUV flux, suggesting that intense photoevaporation takes place in a short period of time, as previously found in X-rays. The scenario is also consistent with the observed distribution of planet masses with density. The accumulated effects of photoevaporation over time indicate that HD 209458b may have lost 0.2 MJ since an age of 20 Myr. Conclusions. Coronal radiation produces rapid photoevaporation of the atmospheres of planets close to young late-type stars. More complex models are needed to explain the observations fully. Spectral energy distributions in the XUV range are made available for stars in the sample through the Virtual Observatory for the use in future planet atmospheric models.

Journal ArticleDOI
TL;DR: In this paper, the HARPS-Upgrade GTO program was used to collect very precise radial velocity data with high cadence and continuity to detect tiny signatures of very low-mass stars that are potentially present in the habitable zone of their parent stars.
Abstract: Context. In 2009 we started an intense radial-velocity monitoring of a few nearby, slowly-rotating and quiet solar-type stars within the dedicated HARPS-Upgrade GTO program.Aims. The goal of this campaign is to gather very-precise radial-velocity data with high cadence and continuity to detect tiny signatures of very-low-mass stars that are potentially present in the habitable zone of their parent stars.Methods. Ten stars were selected among the most stable stars of the original HARPS high-precision program that are uniformly spread in hour angle, such that three to four of them are observable at any time of the year. For each star we recorded 50 data points spread over the observing season. The data points consist of three nightly observations with a total integration time of 10 min each and are separated by two hours. This is an observational strategy adopted to minimize stellar pulsation and granulation noise.Results. We present the first results of this ambitious program. The radial-velocity data and the orbital parameters of five new and one confirmed low-mass planets around the stars HD 20794, HD 85512, and HD 192310 are reported and discussed, among which is a system of three super-Earths and one that harbors a 3.6 M ⊕ -planet at the inner edge of the habitable zone. Conclusions. This result already confirms previous indications that low-mass planets seem to be very frequent around solar-type stars and that this may occur with a frequency higher than 30%.

Journal ArticleDOI
21 Oct 2011-Science
TL;DR: The Heterodyne Instrument for the Far-Infrared on board the Herschel Space Observatory has detected emission lines from both spin isomers of cold water vapor from the disk around the young star TW Hydrae, hinting at a water ice reservoir equivalent to several thousand Earth oceans in mass.
Abstract: Icy bodies may have delivered the oceans to the early Earth, yet little is known about water in the ice-dominated regions of extrasolar planet-forming disks. The Heterodyne Instrument for the Far-Infrared on board the Herschel Space Observatory has detected emission lines from both spin isomers of cold water vapor from the disk around the young star TW Hydrae. This water vapor likely originates from ice-coated solids near the disk surface, hinting at a water ice reservoir equivalent to several thousand Earth oceans in mass. The water’s ortho-to-para ratio falls well below that of solar system comets, suggesting that comets contain heterogeneous ice mixtures collected across the entire solar nebula during the early stages of planetary birth.

Journal ArticleDOI
TL;DR: In this article, the authors presented new 1-1.25 micron (z and J band) Subaru/IRCS and 2-3 micron VLT/NaCo data for HR 8799 and a rereduction of the 3-5 micron MMT/Clio data first presented by Hinz et al.
Abstract: We present new 1-1.25 micron (z and J band) Subaru/IRCS and 2 micron (K band) VLT/NaCo data for HR 8799 and a rereduction of the 3-5 micron MMT/Clio data first presented by Hinz et al. Our VLT/NaCo data yield a detection of a fourth planet at a projected separation of approximately 15 AU--"HR 8799e ." We also report new, albeit weak detections of HR 8799b at 1.03 micron and 3.3 micron. Empirical comparisons to field brown dwarfs show that at least HR 8799b and HR 8799c, and possibly HR 8799d, have near-to-mid-IR colors/ magnitudes significantly discrepant from the L/T dwarf sequence. Standard cloud deck atmosphere models appropriate for brown dwarfs provide only (marginally) statistically meaningful fits to HR 8799b and c for unphysically small radii. Models with thicker cloud layers not present in brown dwarfs reproduce the planets' spectral energy distributions far more accurately and without the need for resealing the planets' radii. Our preliminary modeling suggests that HR 8799b has log(g) = 4-4.5, T(sub eff) = 900 K. while HR 8799c, d, and (by inference) e have log(g) = 4-4.5, T(sub eff) = 1000-1200 K. Combining results from planet evolution models and new dynamical stability limits implies that the masses of HR 8799b, c, d, and e are 6-7 M(sub j), 7-10 M(sub j), 7-10 M(sub j), and 7-10 M(sub j). "Patchy" cloud prescriptions may provide even better fits to the data and may lower the estimated surface gravities and masses. Finally, contrary to some recent claims, forming the HR 8799 planets by core accretion is still plausible, although such systems are likely rare.

Journal ArticleDOI
TL;DR: The authors showed that collision-induced absorption allows molecular hydrogen to act as an incondensible greenhouse gas and that 40 bars of pure H2 on a three Earth-mass planet can maintain a surface temperature of 280 K out to 1.5 AU from an early-type M dwarf star and 10 AU from a G-type star.
Abstract: We show that collision-induced absorption allows molecular hydrogen to act as an incondensible greenhouse gas and that bars or tens of bars of primordial H2–He mixtures can maintain surface temperatures above the freezing point of water well beyond the “classical” habitable zone defined for CO2 greenhouse atmospheres. Using a onedimensional radiative–convective model, we find that 40 bars of pure H2 on a three Earth-mass planet can maintain a surface temperature of 280 K out to 1.5 AU from an early-type M dwarf star and 10 AU from a G-type star. Neglecting the effects of clouds and of gaseous absorbers besides H2, the flux at the surface would be sufficient for photosynthesis by cyanobacteria (in the G star case) or anoxygenic phototrophs (in the M star case). We argue that primordial atmospheres of one to several hundred bars of H2–He are possible and use a model of hydrogen escape to show that such atmospheres are likely to persist further than 1.5 AU from M stars, and 2 AU from G stars, assuming these planets have protecting magnetic fields. We predict that the microlensing planet OGLE-05-390Lb could have retained an H2–He atmosphere and be habitable at ∼2.6 AU from its host M star.

Journal ArticleDOI
TL;DR: In this article, the authors present a framework to conservatively estimate the probability that any particular planet-like transit signal observed by the Kepler mission is in fact a planet, prior to any ground-based follow-up efforts.
Abstract: We present a framework to conservatively estimate the probability that any particular planet-like transit signal observed by the Kepler mission is in fact a planet, prior to any ground-based follow-up efforts. We use Monte Carlo methods based on stellar population synthesis and Galactic structure models, and report false positive probabilities (FPPs) for every Kepler Object of Interest, assuming a 20% intrinsic occurrence rate of close-in planets in the radius range 0.5 R_⊕ 10% to <1%. Since Kepler has detected many more planetary signals than can be positively confirmed with ground-based follow-up efforts in the near term, these calculations will be crucial to using the ensemble of Kepler data to determine population characteristics of planetary systems. We also describe how our analysis complements the Kepler team's more detailed BLENDER false positive analysis for planet validation.

Journal ArticleDOI
TL;DR: In this paper, the authors revisited the issue of the cause of the dynamical instability during the early dynamical evolution of the giant planets and showed that viscous stirring leads to an irreversible exchange of energy between a planet and a planetesimal disk even in the absence of close encounters between the planet and disk particles.
Abstract: We revisit the issue of the cause of the dynamical instability during the so-called Nice model, which describes the early dynamical evolution of the giant planets. In particular, we address the problem of the interaction of planets with a distant planetesimal disk in the time interval between the dispersal of the proto-solar nebula and the instability. In contrast to previous works, we assume that the inner edge of the planetesimal disk is several AUs beyond the orbit of the outermost planet, so that no close encounters between planets and planetesimals occur. Moreover, we model the disk’s viscous stirring, induced by the presence of embedded Pluto-sized objects. The four outer planets are assumed to be initially locked in a multi-resonant state that most likely resulted from a preceding phase of gas-driven migration. We show that viscous stirring leads to an irreversible exchange of energy between a planet and a planetesimal disk even in the absence of close encounters between the planet and disk particles. The process is mainly driven by the most eccentric planet, which is the inner ice giant in the case studied here. In isolation, this would cause this ice giant to migrate inward. However, because it is locked in resonance with Saturn, its eccentricity increases due to adiabatic invariance. During this process, the system crosses many weak secular resonances—many of which can disrupt the mean motion resonance and make the planetary system unstable. We argue that this basic dynamical process would work in many generic multi-resonant systems—forcing a good fraction of them to become unstable. Because the energy exchange proceeds at a very slow pace, the instability manifests itself late, on a timescale consistent with the epoch of the late heavy bombardment (∼700 Myr). In the migration mechanism presented here, the instability time is much less sensitive to the properties of the planetesimal disk (particularly the location of its inner edge) than in the classic Nice model mechanism.

Journal ArticleDOI
TL;DR: In this article, the authors developed a general method to fit the planetary distribution function (PLDF) to exoplanet survey data, which accommodates more than one planet per star and any number of planet or target star properties.
Abstract: We develop a general method to fit the planetary distribution function (PLDF) to exoplanet survey data. This maximum likelihood method accommodates more than one planet per star and any number of planet or target star properties. Application to Kepler data relies on estimates of the efficiency of discovering transits around Solar type stars by Howard et al. (2011). These estimates are shown to agree with theoretical predictions for an ideal transit survey. Using announced Kepler planet candidates, we fit the PLDF as a joint powerlaw in planet radius, down to 0.5R⊕, and orbital period, up to 50 days. The estimated number of planets per star in this sample is ∼ 0.7 —1.4, where the broad range covers systematic uncertainties in the detection efficiency. To analyze trends in the PLDF we consider four planet samples, divided between shorter and longer periods at 7 days and between large and small radii at 3 R⊕. At longer periods, the size distribution of the small planets, with index α ≃ −1.2 ± 0.2 steepens to α ≃ −2.0 ± 0.2 for the larger planet sample. For shorter periods, the opposite is seen: smaller planets follow a steep powerlaw, α ≃ −1.9 ± 0.2 that is much shallower, α ≃ −0.7 ± 0.2 at large radii. The observed deficit of intermediate-sized planets at the shortest periods may arise from the evaporation and sublimation of Neptune and Saturn-like planets. If the trend and explanation hold, it would be spectacular observational confirmation of the core accretion and migration hypotheses, and allow refinement of these theories. Subject headings: Methods: statistical — Planetary Systems — Planets and satellites: detection — Planets and satellites: dynamical evolution and stability — Planets and satellites: formation — Stars: statistics

Journal ArticleDOI
TL;DR: In this paper, a catalog of precise stellar parameters for low-activity FGK single stars in a volumelimited sample followed by the HARPS spectrograph in the quest to identify extra-solar planets is presented.
Abstract: To understand the formation and evolution of solar-type stars and planets in the solar neighborhood, we need to obtain their stellar parameters with high precision. We present a catalog of precise stellar parameters for low-activity FGK single stars in a volumelimited sample followed by the HARPS spectrograph in the quest to identify extra-solar planets. The spectroscopic analysis was completed assuming LTE with a grid of Kurucz atmosphere models and using the ARES code to perform an automatic measurement of the line equivalent widths. The results are compared with different independent methods and also with other values found in the literature for common stars. Both comparisons are consistent and illustrate the homogeneity of the parameters derived by our team. The derived metallicities of this sample reveal a somewhat different distribution for the present planet hosts, but still indicates the already known higher frequency of planets observed for the more metal-rich stars. We combine the results derived in this sample with the one from the CORALIE survey to present the largest homogeneous spectroscopic study of the metallicity-giant-planet relation using a total of 1830 stars.

Journal ArticleDOI
TL;DR: In this paper, the authors address the important role played by observational strategies in averaging out the radial velocity signature of stellar noise and derive the planetary mass detection limits expected in the presence of stellar noises.
Abstract: Context. Stellar noise produced by oscillations, granulation phenomena (granulation, mesogranulation, and supergranulation), and activity affects radial velocity measurements. The signature of the corresponding effect in radial velocity is small, around the meter-per-second, but already too large for the detection of Earth-mass planets in habitable zones.Aims. We address the important role played by observational strategies in averaging out the radial velocity signature of stellar noise. We also derive the planetary mass detection limits expected in the presence of stellar noise.Methods. We start with HARPS asteroseismology measurements for four stars (β Hyi, α Cen A, μ Ara, and τ Ceti) available in the ESO archive and very precise measurements of α Cen B. This sample covers different spectral types from G2 to K1 and different evolutionary stages, from subgiant to dwarf stars. Since data span between 5 and 8 days, only stellar noise sources with timescales shorter than this time span will be extracted from these observations. Therefore, we are able to study oscillation modes and granulation phenomena without being significantly affected by activity noise present on longer timescales. For those five stars, we generate synthetic radial velocity measurements after fitting the corresponding models of stellar noise in Fourier space. These measurements allow us to study the radial velocity variation due to stellar noise for different observational strategies as well as the corresponding planetary mass detection limits.Results. Applying three measurements per night of 10 min exposure each, 2 h apart, seems to most efficiently average out the stellar noise considered. For quiet K1V stars such as α Cen B, this strategy allows us to detect planets of about three times the mass of Earth with an orbital period of 200 days, corresponding to the habitable zone of the star. Moreover, our simulations suggest that planets smaller than typically 5 M ⊕ can be detected with HARPS over a wide range of separations around most non-active solar-type dwarfs. Since activity is not yet included in our simulation, these detection limits correspond to a case, which exists, where the host star has few magnetic features and stellar noise is dominated by oscillation modes and granulation phenomena. For our star sample, a trend between spectral type and surface gravity and the level of radial velocity variation is also identified by our simulations.

Journal ArticleDOI
TL;DR: In this article, a procedure (BLENDER) is described to model the photometry in terms of a "blend" rather than a planet orbiting a star, where a blend may consist of a background or foreground eclipsing binary (or star-planet pair) whose eclipses are attenuated by the light of the candidate and possibly other stars within the photometric aperture.
Abstract: Light curves from the Kepler Mission contain valuable information on the nature of the phenomena producing the transit-like signals. To assist in exploring the possibility that they are due to an astrophysical false positive, we describe a procedure (BLENDER) to model the photometry in terms of a “blend” rather than a planet orbiting a star. A blend may consist of a background or foreground eclipsing binary (or star–planet pair) whose eclipses are attenuated by the light of the candidate and possibly other stars within the photometric aperture. We apply BLENDER to the case of Kepler-9 (KIC 3323887), a target harboring two previously confirmed Saturn-size planets (Kepler-9 b and Kepler-9 c) showing transit timing variations, and an additional shallower signal with a 1.59 day period suggesting the presence of a super-Earth-size planet. Using BLENDER together with constraints from other follow-up observations we are able to rule out all blends for the two deeper signals and provide independent validation of their planetary nature. For the shallower signal, we rule out a large fraction of the false positives that might mimic the transits. The false alarm rate for remaining blends depends in part (and inversely) on the unknown frequency of small-size planets. Based on several realistic estimates of this frequency, we conclude with very high confidence that this small signal is due to a super-Earth-size planet (Kepler-9 d) in a multiple system, rather than a false positive. The radius is determined to be 1.64 +0.19 −0.14 R⊕, and current spectroscopic observations are as yet insufficient to establish its mass.

Journal ArticleDOI
TL;DR: In this article, the authors show that the subset of accreting transitional disks with wide, optically thin inner holes of 15 AU or more can only be sculpted by multiple planets orbiting inside each hole.
Abstract: Although there has yet been no undisputed discovery of a still-forming planet embedded in a gaseous protoplanetary disk, the cleared inner holes of transitional disks may be signposts of young planets. Here, we show that the subset of accreting transitional disks with wide, optically thin inner holes of 15 AU or more can only be sculpted by multiple planets orbiting inside each hole. Multiplanet systems provide two key ingredients for explaining the origins of transitional disks. First, multiple planets can clear wide inner holes where single planets open only narrow gaps. Second, the confined, non-axisymmetric accretion flows produced by multiple planets provide a way for an arbitrary amount of mass transfer to occur through an apparently optically thin hole without overproducing infrared excess flux. Rather than assuming that the gas and dust in the hole are evenly and axisymmetrically distributed, one can construct an inner hole with apparently optically thin infrared fluxes by covering a macroscopic fraction of the hole's surface area with locally optically thick tidal tails. We also establish that other clearing mechanisms, such as photoevaporation, cannot explain our subset of accreting transitional disks with wide holes. Transitional disks are therefore high-value targets for observational searches for young planetary systems.

DOI
01 May 2011
TL;DR: An overview of the processes described in this chapter is as follows in this paper, where the authors start with star formation in molecular clouds, and then gravitationally accumulate their mantles of ice and/or gas.
Abstract: PLANETARY SYSTEMS, the solar system amongst them, are believed to form as inevitable and common byproducts of star formation For orientation, an overview of the processes described in this chapter is as follows The present paradigm starts with star formation in molecular clouds Brown dwarfs are formed as the lowmass tail of this process, although some may be formed as a high-mass tail of planet formation Gas and dust in the collapsing molecular cloud which does not fall directly onto the protostar resides in a relatively long-lived accretion disk which provides the environment for the subsequent stages of planet formation Terrestrial-mass planets are formed within the disk through the progressive agglomeration of material denoted, as it grows in size, as dust, rocks, planetesimals and protoplanets A similar process typically occurring further out in the disk results in the cores of giant planets, which then gravitationally accumulate their mantles of ice and/or gas As the planet-forming bodies grow in mass, growth and dynamics become more dominated by gravitational interactions Towards the final phases, and before the remaining gas is lost through accretion or dispersal, the gas provides a viscous medium at least partially responsible for planetary migration Some migration also occurs during these later stages as a result of gravitational scattering between the (proto-)planets and the residual sea of planetesimals The final structural stabilisation of the planetary system may be affected by planet–planet interactions, until a configuration emerges which may be dynamically stable over billions of years The current observational data for exoplanet systems is broadly compatible with this overall picture Other constraints come from a substantial body of detailed observations of the solar system (Chapter 12) Context and present paradigm An understanding of howplanets formis essential in understanding and interpreting the considerable range of observed planetary system architectures and dynamics Today, the most widely considered solar nebula theory holds that planet formation in the solar system, and by inference in other exoplanet systems, follows on from the process of star formation and accretion disk formation, through the agglomeration of residual material as the protoplanetary disk collapses and evolves

Journal ArticleDOI
TL;DR: In this paper, the authors investigated a population of transiting planets that receive relatively modest stellar insolation, indicating equilibrium temperatures <1000?K, and for which the heating mechanism that inflates hot Jupiters does not appear to be significantly active.
Abstract: We investigate a population of transiting planets that receive relatively modest stellar insolation, indicating equilibrium temperatures <1000?K, and for which the heating mechanism that inflates hot Jupiters does not appear to be significantly active. We use structural evolution models to infer the amount of heavy elements within each of these planets. There is a correlation between the stellar metallicity and the mass of heavy elements in its transiting planet(s). It appears that all giant planets possess a minimum of ~10-15 Earth masses of heavy elements, with planets around metal-rich stars having larger heavy-element masses. There is also an inverse relationship between the mass of the planet and the metal enrichment (Z pl/Z star), which appears to have little dependency on the metallicity of the star. Saturn- and Jupiter-like enrichments above solar composition are a hallmark of all the gas giants in the sample, even planets of several Jupiter masses. These relationships provide an important constraint on planet formation and suggest large amounts of heavy elements within planetary H/He envelopes. We suggest that the observed correlation can soon also be applied to inflated planets, such that the interior heavy-element abundance of these planets could be estimated, yielding better constraints on their interior energy sources. We point to future directions for planetary population synthesis models and suggest future correlations. This appears to be the first evidence that extrasolar giant planets, as a class, are enhanced in heavy elements.

Posted Content
TL;DR: In this paper, the HARPS spectrograph was used to obtain 121 new radial velocity measurements of Gl 581 with the ESO 3.6 m telescope, and analyzed those together with previous 119 measurements of that star to examine these potential additional super-Earth planets.
Abstract: The Gl 581 planetary system has generated wide interest, because its 4 planets include both the lowest mass planet known around a main sequence star other than the Sun and the first super-Earth planet in the habitable zone of its star. A recent paper announced the possible discovery of two additional super-Earth planets in that system, one of which would be in the middle of the habitable zone of Gl 581. The statistical significance of those two discoveries has, however, been questioned. We have obtained 121 new radial velocity measurements of Gl 581 with the HARPS spectrograph on the ESO 3.6 m telescope, and analyse those together with our previous 119 measurements of that star to examine these potential additional planets. We find that neither is likely to exist with their proposed parameters. We also obtained photometric observations with the 2.5 m Isaac Newton Telescope during a potential transit of the inner planet, Gl 581e, which had a 5% geometric transit probability. Those observations exclude transits for planet densities under 4 times the Earth density within -0.2 sigma to +2.7 sigma of the predicted transit center.

Journal ArticleDOI
TL;DR: In this article, the photometric transit light curve analysis of 115 Kepler giant planet candidates based on public Q0-Q2 photometry was performed and it was shown that 14% of them are likely false positives, based on their secondary eclipse depth.
Abstract: The most irradiated transiting hot Jupiters are characterized by anomalously inflated radii, sometimes exceeding Jupiter's size by more than 60%. While different theoretical explanations have been applied, none of them provide a universal resolution to this observation, despite significant progress in the past years. We refine the photometric transit light curve analysis of 115 Kepler giant planet candidates based on public Q0-Q2 photometry. We find that 14% of them are likely false positives, based on their secondary eclipse depth. We report on planet radii versus stellar flux. We find an increase in planet radii with increased stellar irradiation for the Kepler giant planet candidates, in good agreement with existing hot Jupiter systems. We find that in the case of modest irradiation received from the stellar host, giant planets do not have inflated radii, and appear to have radii independent of the host star incident flux. This finding suggests that the physical mechanisms inflating hot Jupiters become ineffective below a given orbit-averaged stellar irradiation level of ~2 × 108 erg s–1 cm–2.

Journal ArticleDOI
TL;DR: In this article, the authors present a systematic evaluation of the agreement between the observed radii of 90 well-characterized transiting extrasolar giant planets and their corresponding model radii.
Abstract: We present a systematic evaluation of the agreement between the observed radii of 90 well-characterized transiting extrasolar giant planets and their corresponding model radii. Our model radii are drawn from previously published calculations of coreless giant planets that have attained their asymptotic radii, and which have been tabulated for a range of planet masses and equilibrium temperatures. (We report a two-dimensional polynomial fitting function that accurately represents the models.) As expected, the model radii provide a statistically significant improvement over a null hypothesis that the sizes of giant planets are completely independent of mass and effective temperature. As is well known, however, fiducial models provide an insufficient explanation; the planetary radius anomalies, , are strongly correlated with planetary equilibrium temperature. We find that the radius anomalies have a best-fit dependence, , with α = 1.4 ± 0.6. Incorporating this relation into the model radii leads to substantially less scatter in the radius correlation. The extra temperature dependence represents an important constraint on theoretical models for hot Jupiters. Using simple scaling arguments, we find support for the hypothesis of Batygin & Stevenson that this correlation can be attributed to a planetary heating mechanism that is mediated by magnetohydrodynamic coupling between the planetary magnetic field and near-surface flow that is accompanied by ohmic dissipation at adiabatic depth. Additionally, we find that the temperature dependence is likely too strong to admit kinetic heating as the primary source of anomalous energy generation within the majority of the observed transiting planets.