scispace - formally typeset
Search or ask a question

Showing papers on "Transcranial direct-current stimulation published in 2019"


Journal ArticleDOI
TL;DR: The medial PFC (mPFC) could serve dual, opposing roles in pain: it mediates antinociceptive effects, due to its connections with other cortical areas, and as the main source of cortical afferents to the PAG for modulation of pain.
Abstract: The prefrontal cortex (PFC) is not only important in executive functions, but also pain processing. The latter is dependent on its connections to other areas of the cerebral neocortex, hippocampus, periaqueductal gray (PAG), thalamus, amygdala, and basal nuclei. Changes in neurotransmitters, gene expression, glial cells, and neuroinflammation occur in the PFC during acute and chronic pain, that result in alterations to its structure, activity, and connectivity. The medial PFC (mPFC) could serve dual, opposing roles in pain: (1) it mediates antinociceptive effects, due to its connections with other cortical areas, and as the main source of cortical afferents to the PAG for modulation of pain. This is a 'loop' where, on one side, a sensory stimulus is transformed into a perceptual signal through high brain processing activity, and perceptual activity is then utilized to control the flow of afferent sensory stimuli at their entrance (dorsal horn) to the CNS. (2) It could induce pain chronification via its corticostriatal projection, possibly depending on the level of dopamine receptor activation (or lack of) in the ventral tegmental area-nucleus accumbens reward pathway. The PFC is involved in biopsychosocial pain management. This includes repetitive transcranial magnetic stimulation, transcranial direct current stimulation, antidepressants, acupuncture, cognitive behavioral therapy, mindfulness, music, exercise, partner support, empathy, meditation, and prayer. Studies demonstrate the role of the PFC during placebo analgesia, and in establishing links between pain and depression, anxiety, and loss of cognition. In particular, losses in PFC grey matter are often reversible after successful treatment of chronic pain.

355 citations


Journal ArticleDOI
27 Mar 2019-BMJ
TL;DR: These findings provide evidence for the consideration of non-surgical brain stimulation techniques as alternative or add-on treatments for adults with major depressive episodes and highlight important research priorities in the specialty of brain stimulation.
Abstract: OBJECTIVE To estimate the comparative clinical efficacy and acceptability of non-surgical brain stimulation for the acute treatment of major depressive episodes in adults. DESIGN Systematic review with pairwise and network meta- analysis. DATA SOURCES Electronic search of Embase, PubMed/Medline, and PsycINFO up to 8 May 2018, supplemented by manual searches of bibliographies of several reviews (published between 2009 and 2018) and included trials. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Clinical trials with random allocation to electroconvulsive therapy (ECT), transcranial magnetic stimulation (repetitive (rTMS), accelerated, priming, deep, and synchronised), theta burst stimulation, magnetic seizure therapy, transcranial direct current stimulation (tDCS), or sham therapy. MAIN OUTCOME MEASURES Primary outcomes were response (efficacy) and all cause discontinuation (discontinuation of treatment for any reason) (acceptability), presented as odds ratios with 95% confidence intervals. Remission and continuous depression severity scores after treatment were also examined. RESULTS 113 trials (262 treatment arms) that randomised 6750 patients (mean age 47.9 years; 59% women) with major depressive disorder or bipolar depression met the inclusion criteria. The most studied treatment comparisons were high frequency left rTMS and tDCS versus sham therapy, whereas recent treatments remain understudied. The quality of the evidence was typically of low or unclear risk of bias (94 out of 113 trials, 83%) and the precision of summary estimates for treatment effect varied considerably. In network meta-analysis, 10 out of 18 treatment strategies were associated with higher response compared with sham therapy: bitemporal ECT (summary odds ratio 8.91, 95% confidence interval 2.57 to 30.91), high dose right unilateral ECT (7.27, 1.90 to 27.78), priming transcranial magnetic stimulation (6.02, 2.21 to 16.38), magnetic seizure therapy (5.55, 1.06 to 28.99), bilateral rTMS (4.92, 2.93 to 8.25), bilateral theta burst stimulation (4.44, 1.47 to 13.41), low frequency right rTMS (3.65, 2.13 to 6.24), intermittent theta burst stimulation (3.20, 1.45 to 7.08), high frequency left rTMS (3.17, 2.29 to 4.37), and tDCS (2.65, 1.55 to 4.55). Network meta-analytic estimates of active interventions contrasted with another active treatment indicated that bitemporal ECT and high dose right unilateral ECT were associated with increased response. All treatment strategies were at least as acceptable as sham therapy. CONCLUSIONS These findings provide evidence for the consideration of non-surgical brain stimulation techniques as alternative or add-on treatments for adults with major depressive episodes. These findings also highlight important research priorities in the specialty of brain stimulation, such as the need for further well designed randomised controlled trials comparing novel treatments, and sham controlled trials investigating magnetic seizure therapy.

187 citations


Journal ArticleDOI
TL;DR: It is demonstrated that transcranial electrical stimulation, as typically applied to humans, affects the firing patterns of individual neurons in alert nonhuman primates, which are the best available animal model for the human brain.
Abstract: In PNAS, Krause et al. (1) applied transcranial alternating current stimulation (tACS) in 2 macaque monkeys and measured the effect on neural entrainment in the hippocampus and basal ganglia. They delivered 2-mA tACS (4 mA peak-to-peak) through 2 scalp electrodes and measured average electric field strengths in the hippocampus and basal ganglia of 0.28 V/m in one monkey and 0.35 V/m in another monkey. They state that this setup gives a realistic model for human tACS, where the field on the neocortex may reach 0.8 V/m (2). Krause et al. (1) observed neural entrainment in the hippocampus and the basal ganglia and concluded that it was directly caused by … [↵][1]2To whom correspondence may be addressed. Email: myles.mclaughlin{at}kuleuven.be. [1]: #xref-corresp-1-1

136 citations


Journal ArticleDOI
TL;DR: A multiplicity of sham stimulation protocols is being used in the tDCS research field and might have different biological effects beyond the intended transient sensations and it is sought to enlighten the scientific community to this possible confounding factor in order to increase reproducibility of neurophysiological, cognitive and clinical tDCS studies.

124 citations


Journal ArticleDOI
TL;DR: Overall, this work provides preliminary evidence that both, excitatory stimulation of the left prefrontal cortex and inhibitorystimulation of the right prefrontal cortex can reduce symptom severity in anxiety disorders.

116 citations


Journal ArticleDOI
TL;DR: It is demonstrated that a large part of inter-individual variability in tDCS may be due to differences in the electric fields, and electric field dosimetry could be useful for controlling the neuroplastic effects of tDCS.
Abstract: The effects of transcranial direct current stimulation (tDCS) on motor cortical excitability are highly variable between individuals. Inter-individual differences in the electric fields generated in the brain by tDCS might play a role in the variability. Here, we explored whether these fields are related to excitability changes following anodal tDCS of the primary motor cortex (M1). Motor evoked potentials (MEPs) were measured in 28 healthy subjects before and after 20 min sham or 1 mA anodal tDCS of right M1 in a double-blind crossover design. The electric fields were individually modelled based on magnetic resonance images. Statistical analysis indicated that the variability in the MEPs could be partly explained by the electric fields, subjects with the weakest and strongest fields tending to produce opposite changes in excitability. To explain the findings, we hypothesized that the likely locus of action was in the hand area of M1, and the effective electric field component was that in the direction normal to the cortical surface. Our results demonstrate that a large part of inter-individual variability in tDCS may be due to differences in the electric fields. If this is the case, electric field dosimetry could be useful for controlling the neuroplastic effects of tDCS.

110 citations


Journal ArticleDOI
TL;DR: The most promising results of NIBS have been obtained for depression, although their efficacy still warrants improvement, and tDCS is a technically easier method and therefore potentially suitable for wider clinical use.

108 citations


Journal ArticleDOI
01 Oct 2019-Cortex
TL;DR: Systemically explored the association between tDCS, these parameters and induced after-effects on motor cortex excitability and provides further insights on the dependency of tDCS -induced neuroplasticity from the stimulation parameters, and therefore delivers crucial information for future applications.

108 citations


Journal ArticleDOI
TL;DR: Evidence is presented suggesting that combining NIBS with targeted, cognitive interventions offers a potentially powerful new approach to treating neuropsychiatric disorders and the concept of controlling for state‐dependent effects of brain stimulation using simultaneous therapies as a mechanism for greater possible effectiveness is introduced.
Abstract: Pharmacotherapy, psychotherapy, and non-invasive brain stimulation (NIBS)1 each show efficacy in the treatment of psychiatric disorders; however, more efficacious interventions are needed as reflected by an overall unmet need in mental health care. While each modality has typically been studied and developed as a monotherapy, in practice they are typically used in combination. Research has begun to emerge studying the potential synergistic actions of multi-modal, combination therapies. For example, NIBS combined with rehabilitation strategies have demonstrated some success for speech and motor rehabilitation in stroke patients. In this review we present evidence suggesting that combining NIBS with targeted, cognitive interventions offers a potentially powerful new approach to treating neuropsychiatric disorders. Here we focus on NIBS studies using transcranial direct current stimulation (tDCS)2 and transcranial magnetic stimulation (TMS)3 given that these modalities are relatively safe, noninvasive, and can be performed simultaneously with neurocognitive interventions. We review the concept of "state dependent" effects of NIBS and highlight how simultaneous or sequential cognitive interventions could help optimize NIBS therapy by providing further control of ongoing neural activity in targeted neural networks. This review spans a range of neuropsychiatric disorders including major depressive disorder, schizophrenia, generalized anxiety, and autism. For each disorder, we emphasize neuroanatomical circuitry that could be engaged with combination therapy and critically discuss the literature that has begun to emerge. Finally, we present possible underlying mechanisms and propose future research strategies that may further refine the potential of combination therapies.

102 citations


Journal ArticleDOI
TL;DR: Novel non-invasive brain stimulation targeted at dlPFC reduces craving and consumption levels, providing the first meta-analytical evidence for the latter effect in drug addiction, with larger effects in multi-session as compared to single-session interventions.

94 citations


Journal ArticleDOI
TL;DR: It is demonstrated that rIFG tDCS can modulate the activity and functional connectivity of large‐scale brain networks involved in cognitive function, in a brain state and polarity dependent manner.
Abstract: Despite its widespread use in cognitive studies, there is still limited understanding of whether and how transcranial direct current stimulation (tDCS) modulates brain network function. To clarify its physiological effects, we assessed brain network function using functional magnetic resonance imaging (fMRI) simultaneously acquired during tDCS stimulation. Cognitive state was manipulated by having subjects perform a Choice Reaction Task or being at "rest." A novel factorial design was used to assess the effects of brain state and polarity. Anodal and cathodal tDCS were applied to the right inferior frontal gyrus (rIFG), a region involved in controlling activity large-scale intrinsic connectivity networks during switches of cognitive state. tDCS produced widespread modulation of brain activity in a polarity and brain state dependent manner. In the absence of task, the main effect of tDCS was to accentuate default mode network (DMN) activation and salience network (SN) deactivation. In contrast, during task performance, tDCS increased SN activation. In the absence of task, the main effect of anodal tDCS was more pronounced, whereas cathodal tDCS had a greater effect during task performance. Cathodal tDCS also accentuated the within-DMN connectivity associated with task performance. There were minimal main effects of stimulation on network connectivity. These results demonstrate that rIFG tDCS can modulate the activity and functional connectivity of large-scale brain networks involved in cognitive function, in a brain state and polarity dependent manner. This study provides an important insight into mechanisms by which tDCS may modulate cognitive function, and also has implications for the design of future stimulation studies.

Journal ArticleDOI
TL;DR: In this paper, the authors used transcranial direct current stimulation (tDCS) to improve the inhibitory control functions of adolescents with ADHD symptoms using 20 high-scores.
Abstract: Objective: The purpose of this study was to improve the inhibitory control functions through transcranial direct current stimulation (tDCS) in adolescents with ADHD symptoms Method: Twenty high sc

Journal ArticleDOI
TL;DR: TACS has potential as a network‐level approach to modulate reduced neural oscillations related to clinical symptoms in patients with schizophrenia, and it is found that 10Hz‐tACS enhanced alpha oscillations and modulated functional connectivity in the alpha frequency band.

Journal ArticleDOI
TL;DR: The findings corroborate previous reports on tDCS-induced neurophysiological modulations and further advance the understanding of underlying mechanisms by providing first empirical evidence for the association of the injected electric field and neuromodulatory effects.

Journal ArticleDOI
TL;DR: This study presents the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation.
Abstract: Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function.

Journal ArticleDOI
TL;DR: Daily tDCS over the DLPFC for 6 months may improve or stabilize cognition and rCMRglc in AD patients, suggesting the therapeutic potential of repeated at-home tDCS.

Journal ArticleDOI
TL;DR: Individual results of studies using a-tDCS applied over the prefrontal and motor cortices either before or during dynamic muscle strength testing showed positive results, but performing meta-analysis was not possible.

Journal ArticleDOI
TL;DR: These results reveal a causal role for prefrontal regulation of amygdala function in attentional capture by threat in individuals with high trait anxiety and indicate a neurocognitive mechanism that could contribute to tDCS treatment effects in affective disorders.
Abstract: Importance Transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC) is under clinical investigation as a treatment for major depressive disorder. However, the mechanisms of action are unclear, and there is a lack of neuroimaging evidence, particularly among individuals with affective dysfunction. Furthermore, there is no direct causal evidence among humans that the prefrontal-amygdala circuit functions as described in animal models (ie, that increasing activity in prefrontal cortical control regions inhibits amygdala response to threat). Objective To determine whether stimulation of the prefrontal cortex reduces amygdala threat reactivity in individuals with trait anxiety. Design, Setting, and Participants This community-based randomized clinical trial used a double-blind, within-participants design (2 imaging sessions per participant). Eighteen women with high trait anxiety (age range, 18-42 years) who scored greater than 45 on the trait measure of State-Trait Anxiety Inventory were randomized to receive active or sham tDCS of the DLPFC during the first session and the other intervention during the next session. Each intervention was followed immediately by a functional imaging scan during which participants performed an attentional task requiring them to ignore threatening face distractors. Data were collected from May 7 to October 6, 2015. Main Outcomes and Measures Amygdala threat response, measured with functional magnetic resonance imaging. Results Data from 16 female participants (mean age, 23 years; range, 18-42 years), with 8 in each group, were analyzed. Compared with sham stimulation, active DLPFC stimulation significantly reduced bilateral amygdala threat reactivity (z = 3.30, P = .04) and simultaneously increased activity in cortical regions associated with attentional control (z = 3.28, P < .001). In confirmatory behavioral analyses, there was a mean improvement in task accuracy of 12.2% (95% CI, 0.30%-24.0%; mean [SD] difference in number of correct answers, 2.2 [4.5]; t15 = 1.94, P = .04) after active DLPFC stimulation. Conclusions and Relevance These results reveal a causal role for prefrontal regulation of amygdala function in attentional capture by threat in individuals with high trait anxiety. The finding that prefrontal stimulation acutely increases attentional control signals and reduces amygdala threat reactivity may indicate a neurocognitive mechanism that could contribute to tDCS treatment effects in affective disorders.

Journal ArticleDOI
12 Apr 2019-PLOS ONE
TL;DR: This research presents a novel probabilistic procedure that allows for direct measurement of the response of the immune system to earthquake-triggered landsliding.
Abstract: Transcranial direct current stimulation (tDCS) is a promising method for altering cortical excitability with clinical implications in neuropsychiatric diseases. Its application in neurodevelopmental disorders especially attention-deficit hyperactivity disorder (ADHD), is in early stage and promising but its effectiveness has not been systematically examined yet. We conducted a meta-analysis on the effectiveness of tDCS on the most studied neuropsychological symptoms of ADHD, which is the first reported meta-analysis of tDCS studies on ADHD. Data from 10 randomized controlled studies (including 11 separate experiments) targeting inhibitory control, and/or working memory (WM) in ADHD were included. Results show that overall tDCS significantly improved inhibitory control. Sub-analyses further show that dorsolateral prefrontal cortex (dlPFC) (but not right inferior frontal gyrus) tDCS and anodal (but not cathodal) tDCS significantly improved inhibitory control with a small effect size. Anodal dlPFC-tDCS had the largest significant effect on inhibitory control with a small-to-medium effect size. Additionally, a significant improving effect of tDCS on inhibitory control accuracy (but not response time) and WM speed (but not accuracy) were found. Overall, this meta-analysis supports a beneficial effect of tDCS on inhibitory control and WM in ADHD with a small-to-medium effect size. TDCS seems to be a promising method for improving neuropsychological and cognitive deficits in ADHD. However, there might be a dissociation between neuropsychological deficits and clinical symptoms of ADHD and therefore, the significance of this meta-analysis for clinical purposes is limited. Future studies should systematically evaluate the role of inter-individual factors (i.e., ADHD subtype, types of the deficit) and stimulation parameters (i.e., site, polarity, intensity, duration, repetition rate) on tDCS efficacy in ADHD population and examine whether benefits are long-term.

Journal ArticleDOI
TL;DR: Anodal tDCS to the left DLPFC lead to a significant improvement in reaction time, an increase in P300 amplitude and a decrease in N200 amplitude in a state-dependent manner: baseline ERP amplitudes conditioned the effects of tDCS.

Journal ArticleDOI
TL;DR: In this paper, subjective reports of 192 volunteers who either received real tDCS (n = 96) or Fade-in, short-stimulation, fade-out (FSF) tDCS were analyzed.
Abstract: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method that is frequently used to study cortical excitability changes and their impact on cognitive functions in humans. While most stimulators are capable of operating in double-blind mode, the amount of discomfort experienced during tDCS may break blinding. Therefore, specifically designed sham stimulation protocols are being used. The "fade-in, short-stimulation, fade-out" (FSF) protocol has been used in hundreds of studies and is commonly believed to be indistinguishable from real stimulation applied at 1 mA for 20 min. We analysed subjective reports of 192 volunteers, who either received real tDCS (n = 96) or FSF tDCS (n = 96). Participants reported more discomfort for real tDCS and correctly guessed the condition above chance-level. These findings indicate that FSF does not ensure complete blinding and that better active sham protocols are needed.

Journal ArticleDOI
TL;DR: To establish the potential of neuromodulation for addiction, more randomized controlled trials are needed that also investigate treatment duration required for long-term abstinence and potential synergy with other addiction interventions.
Abstract: It is important to find new treatments for addiction due to high relapse rates despite current interventions and due to expansion of the field with non-substance related addictive behaviors. Neuromodulation may provide a new type of treatment for addiction since it can directly target abnormalities in neurocircuits. We review literature on five neuromodulation techniques investigated for efficacy in substance related and behavioral addictions: transcranial direct current stimulation (tDCS), (repetitive) transcranial magnetic stimulation (rTMS), EEG, fMRI neurofeedback and deep brain stimulation (DBS) and additionally report on effects of these interventions on addiction-related cognitive processes. While rTMS and tDCS, mostly applied at the dorsolateral prefrontal cortex, show reductions in immediate craving for various addictive substances, placebo-responses are high and long-term outcomes are understudied. The lack in well-designed EEG-neurofeedback studies despite decades of investigation impedes conclusions about its efficacy. Studies investigating fMRI neurofeedback are new and show initial promising effects on craving, but future trials are needed to investigate long-term and behavioral effects. Case studies report prolonged abstinence of opioids or alcohol with ventral striatal DBS but difficulties with patient inclusion may hinder larger, controlled trials. DBS in neuropsychiatric patients modulates brain circuits involved in reward processing, extinction and negative-reinforcement that are also relevant for addiction. To establish the potential of neuromodulation for addiction, more randomized controlled trials are needed that also investigate treatment duration required for long-term abstinence and potential synergy with other addiction interventions. Finally, future advancement may be expected from tailoring neuromodulation techniques to specific patient (neurocognitive) profiles.

Journal ArticleDOI
TL;DR: This review focuses on both the preclinical and clinical evidence demonstrating the role of the insula in addiction, thereby demonstrating its promise as a target for brain stimulation.
Abstract: Substance use disorders (SUDs) are a growing public health concern with only a limited number of approved treatments. However, even approved treatments are subject to limited efficacy with high long-term relapse rates. Current treatment approaches are typically a combination of pharmacotherapies and behavioral counselling. Growing evidence and technological advances suggest the potential of brain stimulation techniques for the treatment of SUDs. There are three main brain stimulation techniques that are outlined in this review: transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS). The insula, a region of the cerebral cortex, is known to be involved in critical aspects underlying SUDs, such as interoception, decision making, anxiety, pain perception, cognition, mood, threat recognition, and conscious urges. This review focuses on both the preclinical and clinical evidence demonstrating the role of the insula in addiction, thereby demonstrating its promise as a target for brain stimulation. Future research should evaluate the optimal parameters for brain stimulation of the insula, through the use of relevant biomarkers and clinical outcomes for SUDs.

Journal ArticleDOI
TL;DR: The results add information about intensified tDCS protocols and suggest that the impact of anodal tDCS on neuroplasticity is relatively robust with respect to gradual alterations of stimulation intensity, and duration.
Abstract: Size and duration of the neuroplastic effects of tDCS depend on stimulation parameters, including stimulation duration and intensity of current. The impact of stimulation parameters on physiological effects is partially non-linear. To improve the utility of this intervention, it is critical to gather information about the impact of stimulation duration and intensity on neuroplasticity, while expanding the parameter space to improve efficacy. Anodal tDCS of 1–3 mA current intensity was applied for 15–30 minutes to study motor cortex plasticity. Sixteen healthy right-handed non-smoking volunteers participated in 10 sessions (intensity-duration pairs) of stimulation in a randomized cross-over design. Transcranial magnetic stimulation (TMS)-induced motor-evoked potentials (MEP) were recorded as outcome measures of tDCS effects until next evening after tDCS. All active stimulation conditions enhanced motor cortex excitability within the first 2 hours after stimulation. We observed no significant differences between the three stimulation intensities and durations on cortical excitability. A trend for larger cortical excitability enhancements was however observed for higher current intensities (1 vs 3 mA). These results add information about intensified tDCS protocols and suggest that the impact of anodal tDCS on neuroplasticity is relatively robust with respect to gradual alterations of stimulation intensity, and duration.

Journal ArticleDOI
TL;DR: In general, it is found neuro Stimulation is safe and effective, although any high quality evidence applying neurostimulation to pediatrics is lacking.
Abstract: Neurostimulation for epilepsy refers to the application of electricity to affect the central nervous system, with the goal of reducing seizure frequency and severity. We review the available evidence for the use of neurostimulation to treat pediatric epilepsy, including vagus nerve stimulation (VNS), responsive neurostimulation (RNS), deep brain stimulation (DBS), chronic subthreshold cortical stimulation (CSCS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). We consider possible mechanisms of action and safety concerns, and we propose a methodology for selecting between available options. In general, we find neurostimulation is safe and effective, although any high quality evidence applying neurostimulation to pediatrics is lacking. Further research is needed to understand neuromodulatory systems, and to identify biomarkers of response in order to establish optimal stimulation paradigms.

Journal ArticleDOI
01 Mar 2019-Headache
TL;DR: Non‐pharmacologic interventions, including neuromodulation therapies, have been proposed in patients who are treatment resistant or intolerant to medications.
Abstract: Background Headache is among the most prevalent causes of disability worldwide. Non-pharmacologic interventions, including neuromodulation therapies, have been proposed in patients who are treatment resistant or intolerant to medications. Objective To perform a systematic review on the use of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) for the treatment of specific headache disorders (ie, migraine, tension, cluster, posttraumatic). Methods Data sources: Ovid MEDLINE, Cochrane Central Register of Clinical Trials, Embase, Scopus, PsycINFO. Data extraction All references were reviewed by 2 independent researchers (3039 abstracts, duplicates removed). Records were selected by inclusion criteria for participants (adults 18-65 with primary or secondary headaches), interventions (TMS and tDCS applied as headache treatment), comparators (sham or alternative standard of care), and study type (cohort, case-control, and randomized controlled trials [RCT]). Studies were assessed using the Cochrane Risk of Bias Tool and overall quality determined through the GRADE Tool. A structured synthesis was performed due to heterogeneity of participants and methods. Results Thirty-four studies were included: 16 rTMS, 6 TMS (excluding rTMS), and 12 tDCS. The majority investigated treatment for migraine (19/22 TMS, 8/12 tDCS). Quality of evidence ranged from very low to high. Conclusion Of all TMS and tDCS modalities, rTMS is most promising with moderate evidence that it contributes to reductions in headache frequency, duration, intensity, abortive medication use, depression, and functional impairment. However, only few studies reported changes greater than sham treatment. Further high-quality RCTs with standardized protocols are required for each specific headache disorder to validate a treatment effect. Registration Number: PROSPERO 2017 CRD42017076232.

Journal ArticleDOI
TL;DR: Initial data suggest a reduction in psychophysiological arousal and PTSD symptomatology, supporting future studies, and demonstrates feasibility of applying tDCS during VR.

Journal ArticleDOI
TL;DR: Results showed improved face-name associative memory performance for both recall and recognition measures, but only for younger adults, whereas there was no difference between active and sham stimulation for older adults.
Abstract: Objectives Older adults experience associative memory deficits relative to younger adults (Old & Naveh-Benjamin, 2008). The aim of this study was to test the effect of transcranial direct current stimulation (tDCS) on face-name associative memory in older and younger adults. Method Experimenters applied active (1.5 mA) or sham (0.1 mA) stimulation with the anode placed over the left dorsolateral prefrontal cortex (dlPFC) during a face-name encoding task, and measured both cued recall and recognition performance. Participants completed memory tests immediately after stimulation and after a 24-h delay to examine both immediate and delayed stimulation effects on memory. Results Results showed improved face-name associative memory performance for both recall and recognition measures, but only for younger adults, whereas there was no difference between active and sham stimulation for older adults. For younger adults, stimulation-induced memory improvements persisted after a 24-h delay, suggesting delayed effects of tDCS after a consolidation period. Discussion Although effective in younger adults, these results suggest that older adults may be resistant to this intervention, at least under the stimulation parameters used in the current study. This finding is inconsistent with a commonly seen trend, where tDCS effects on cognition are larger in older than younger adults.

Journal ArticleDOI
TL;DR: Preliminary evidence is provided that tDCS with the anode over the L-DLPFC can improve both inhibitory control and cycling performance in healthy individuals.

Journal ArticleDOI
TL;DR: Initial evidence is provided that home-based, remotely-supervised tDCS treatment may be efficacious and feasible for depressed patients and has high translational potential.