scispace - formally typeset
Search or ask a question

Showing papers on "Transpiration published in 2005"


Journal ArticleDOI
TL;DR: It is argued that a metabolically mediated feedback response of stomatal guard cells to the water status in their immediate vicinity ('hydro-active local feedback') remains the best explanation for many well-known features of hydraulically relatedStomatal behaviour, such as transient 'wrong-way' responses and the equivalence of hydraulic supply and demand as stomatic effectors
Abstract: It is clear that stomata play a critical role in regulating water loss from terrestrial vegetation. What is not clear is how this regulation is achieved. Stomata appear to respond to perturbations of many aspects of the soil-plant-atmosphere hydraulic continuum, but there is little agreement regarding the mechanism (or mechanisms) by which stomata sense such perturbations. This review discusses feedback and feedforward mechanisms by which hydraulic perturbations are putatively transduced into stomatal movements, in relation to generic empirical features of those responses. It is argued that a metabolically mediated feedback response of stomatal guard cells to the water status in their immediate vicinity ('hydro-active local feedback') remains the best explanation for many well-known features of hydraulically related stomatal behaviour, such as transient 'wrong-way' responses and the equivalence of hydraulic supply and demand as stomatal effectors. Furthermore, many curious phenomena that appear inconsistent with feedback, such as 'apparent feedforward' humidity responses and 'isohydric' behaviour (water potential homeostasis), are in fact expected to emerge from the juxtaposition of hydro-active local feedback and the well-known hysteretic and threshold-like effect of water potential on xylem hydraulic resistance.

600 citations


Journal ArticleDOI
11 Aug 2005-Nature
TL;DR: ERECTA, a putative leucine-rich repeat receptor-like kinase (LRR-RLK) known for its effects on inflorescence development, is a major contributor to a locus for Δ on Arabidopsis chromosome 2, which reports the isolation of a gene that regulates transpiration efficiency, ERECTA.
Abstract: The survival of plants in dry conditions requires them to have tight control over transpiration, the process by which they release water and at the same time take up carbon dioxide. Plant breeders have been able to select crops for transpiration efficiency, which suggests that it is under genetic control, but until now the genes involved had not been identified. Now the ERECTA gene, known previously for effects on flowering, has been shown to regulate transpiration efficiency in Arabidopsis plants in part via changes in stomatal density. Assimilation of carbon by plants incurs water costs. In the many parts of the world where water is in short supply, plant transpiration efficiency, the ratio of carbon fixation to water loss, is critical to plant survival, crop yield and vegetation dynamics1. When challenged by variations in their environment, plants often seem to coordinate photosynthesis and transpiration2, but significant genetic variation in transpiration efficiency has been identified both between and within species3,4. This has allowed plant breeders to develop effective selection programmes for the improved transpiration efficiency of crops5, after it was demonstrated that carbon isotopic discrimination, Δ, of plant matter was a reliable and sensitive marker negatively related to variation in transpiration efficiency3,4,6. However, little is known of the genetic controls of transpiration efficiency. Here we report the isolation of a gene that regulates transpiration efficiency, ERECTA. We show that ERECTA, a putative leucine-rich repeat receptor-like kinase (LRR-RLK)7,8 known for its effects on inflorescence development7,9, is a major contributor to a locus for Δ on Arabidopsis chromosome 2. Mechanisms include, but are not limited to, effects on stomatal density, epidermal cell expansion, mesophyll cell proliferation and cell–cell contact.

557 citations


Journal ArticleDOI
TL;DR: The dual crop coefficient sKcd method of the Food and Agricultural Organization of the United States (FAO-56) is intended to improve daily simulation of crop evapotranspiration by considering separately the contribution of evaporation from soil.
Abstract: Crop coefficient curves provide simple, reproducible means to estimate crop evapotranspiration (ET) from weather-based reference ET values. The dual crop coefficient sKcd method of the Food and Agricultural Organization of the United States (FAO) Irrigation and Drainage Paper No. 56 (FAO-56) is intended to improve daily simulation of crop ET by considering separately the contribution of evaporation from soil. The dual method utilizes "basal" crop coefficients representing ET from crops having a dry soil surface and separately predicts evaporation from bare soil based on a water balance of the soil surface layer. Three extensions to the evaporation calculation procedure are described here that are intended to improve accuracy when applications warrant the extra complex- ity. The first extension uses parallel water balances representing the portion of the soil surface wetted by irrigation and precipitation together and the portion wetted by precipitation alone. The second extension uses three "stages" for surface drying and provides for application to deep cracking soils. The third extension predicts the extraction of the transpiration component from the soil surface layer. Sensitivity and analyses and illustrations indicate moderate sensitivity of daily calculated ET to application of the extensions. The dual Kc procedure, although relatively simple computationally and structurally, estimates daily ET as measured by lysimeter relatively well for periods of bare soil and partial and full vegetation cover.

524 citations


Book
24 Jan 2005
TL;DR: Gabriel Katul as discussed by the authors discusses the relationship between photosynthesis, transpiration and soil water balance from hourly to growing-season time scale, and seasonal and interannual fluctuations in soil moisture dynamics.
Abstract: Foreword Gabriel Katul Preface 1. Introduction 2. Stochastic soil moisture dynamics and water balance 3. Crossing properties of soil moisture dynamics 4. Plant water stress 5. Applications to natural ecosystems 6. Coupled dynamics of photosynthesis, transpiration and soil water balance: from hourly to growing-season time scale 7. Plant strategies and water use 8. Seasonal and interannual fluctuations in soil moisture dynamics 9. Spatial scale issues in soil moisture dynamics 10. Hydrologic controls on nutrient cycles 11. Hydrologic variability and ecosystem structure References Species index Subject index.

516 citations


Journal ArticleDOI
TL;DR: It is suggested that silicon application may be useful to improve the drought tolerance of sorghum via the enhancement of water uptake ability.
Abstract: The effects of silicon application on the drought tolerance of sorghum (Sorghum bicolor (L.) Moench) were investigated for two cultivars differing in drought susceptibility. Silicon application ameliorated the decrease in dry weight under drought stress conditions, but had no effect on dry matter production under wet conditions. Under dry conditions, silicon-applied sorghum had a lower shoot to root (S/R) ratio, indicating the facilitation of root growth and the maintenance of the photosynthetic rate and stomatal conductance at a higher level compared with plants grown without silicon application. The diurnal determination of the transpiration rate indicated that the silicon-applied sorghum could extract a larger amount of water from drier soil and maintain a higher stomatal conductance. Very similar effects of silicon application were observed for both cultivars regardless of their drought susceptibility. These results suggest that silicon application may be useful to improve the drought tolerance of sorghum via the enhancement of water uptake ability.

470 citations


Journal ArticleDOI
TL;DR: The characterization of AtMYB60, a R2R3-MYB gene of Arabidopsis, is reported as the first transcription factor involved in the regulation of stomatal movements and opens new possibilities to engineeringStomatal activity to help plants survive desiccation.

470 citations


Journal ArticleDOI
TL;DR: Results indicate that ethylene delays stomatal closure by inhibiting the ABA signaling pathway and were observed in ABA-irrigated plants and the plants in drought condition.
Abstract: To examine the cross talk between the abscisic acid (ABA) and ethylene signal transduction pathways, signaling events during ABA-induced stomatal closure were examined in Arabidopsis (Arabidopsis thaliana) wild-type plants, in an ethylene-overproducing mutant (eto1-1), and in two ethylene-insensitive mutants (etr1-1 and ein3-1). Using isolated epidermal peels, stomata of wild-type plants were found to close within a few minutes in response to ABA, whereas stomata of the eto1-1 mutant showed a similar but less sensitive ABA response. In addition, ABA-induced stomatal closure could be inhibited by application of ethylene or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). In contrast, stomata of the etr1-1 and ein3-1 mutants were able to close in response to concomitant ABA and ACC application, although to a lesser extent than in wild-type plants. Moreover, expression of the ABA-induced gene RAB18 was reduced following ACC application. These results indicate that ethylene delays stomatal closure by inhibiting the ABA signaling pathway. The same inhibitive effects of ethylene on stomatal closure were observed in ABA-irrigated plants and the plants in drought condition. Furthermore, upon drought stress, the rate of transpiration was greater in eto1-1 and wild-type plants exposed to ethylene than in untreated wild-type control plants, indicating that the inhibitive effects of ethylene on ABA-induced stomatal closure were also observed in planta.

359 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined kidney bean plants, with developing gradually water stress for several days after watering and then permitted to recover by re-watering, showing that the critical time for the recovery of photosynthesis was recognized.

324 citations


Journal ArticleDOI
TL;DR: It is found that more water usually enters the leaf from the air than from the roots, and the form of the equations emphasises that the one-way fluxes of water into and out of the stomata must sometimes be considered separately, rather than as a net outward flux.
Abstract: An expression is derived for the isotopic composition of water in leaves under conditions where the composition of water entering the leaf is not necessarily the same as that of water being transpired. The treatment is simplified and considers the average composition of the lamina and of the sites of evaporation. The concept of 'isostorage' is introduced as the product of leaf water content and the isotopic enrichment of leaf water above source water. It is shown that the rate of increase of isostorage is minus the 'isoflux' through the stomata, with the latter expressed as the product of the transpiration flux and the enrichment of the transpired water beyond source water. The approach of the isostorage to the steady state depends on the deviation of the isotopic enrichment of water at the evaporating sites from the steady value, and on the gross (one way) diffusive flux out of the leaf. To achieve model closure, it is assumed that the relationship between leaf water enrichment and that at the sites of evaporation depends on the radial Peclet number in the same manner as in the steady state. The equations have an analytical solution, and we also show how to calculate the results simply using a commonly available computer tool. The form of the equations emphasises that the one-way fluxes of water into and out of the stomata must sometimes be considered separately, rather than as a net outward flux. In this narrow sense we come to the interesting conclusion that more water usually enters the leaf from the air than from the roots.

276 citations


Journal ArticleDOI
TL;DR: This model indicates that such an increase in transpiration over the Amazon and other drought-stressed regions affects the seasonal cycles of temperature through changes in latent heat, thereby establishing a direct link between plant root functioning and climate.
Abstract: Hydraulic redistribution (HR), the nocturnal vertical transfer of soil water from moister to drier regions in the soil profile by roots, has now been observed in Amazonian trees. We have incorporated HR into an atmospheric general circulation model (the National Center for Atmospheric Research Community Atmospheric Model Version 2) to estimate its impact on climate over the Amazon and other parts of the globe where plants displaying HR occur. Model results show that photosynthesis and evapotranspiration increase significantly in the Amazon during the dry season when plants are allowed to redistribute soil water. Plants draw water up and deposit it into the surface layers, and this water subsidy sustains transpiration at rates that deep roots alone cannot accomplish. The water used for dry season transpiration is from the deep storage layers in the soil, recharged during the previous wet season. We estimate that HR increases dry season (July to November) transpiration by ≈40% over the Amazon. Our model also indicates that such an increase in transpiration over the Amazon and other drought-stressed regions affects the seasonal cycles of temperature through changes in latent heat, thereby establishing a direct link between plant root functioning and climate.

273 citations


Journal ArticleDOI
TL;DR: Unlike many other stresses, water stress did not affect the levels of mitochondrial alternative oxidase protein, which suggests a biochemical regulation (other than protein synthesis) that causes this mitochondrial electron shift.
Abstract: The effect of water stress on respiration and mitochondrial electron transport has been studied in soybean (Glycine max) leaves, using the oxygen-isotope-fractionation technique. Treatments with three levels of water stress were applied by irrigation to replace 100%, 50%, and 0% of daily water use by transpiration. The levels of water stress were characterized in terms of light-saturated stomatal conductance (g(s)): well irrigated (g(s) > 0.2 mol H(2)O m(-2) s(-1)), mildly water stressed (g(s) between 0.1 and 0.2 mol H(2)O m(-2) s(-1)), and severely water stressed (g(s) < 0.1 mol H(2)O m(-2) s(-1)). Although net photosynthesis decreased by 40% and 70% under mild and severe water stress, respectively, the total respiratory oxygen uptake (V(t)) was not significantly different at any water-stress level. However, severe water stress caused a significant shift of electrons from the cytochrome to the alternative pathway. The electron partitioning through the alternative pathway increased from 10% to 12% under well-watered or mild water-stress conditions to near 40% under severe water stress. Consequently, the calculated rate of mitochondrial ATP synthesis decreased by 32% under severe water stress. Unlike many other stresses, water stress did not affect the levels of mitochondrial alternative oxidase protein. This suggests a biochemical regulation (other than protein synthesis) that causes this mitochondrial electron shift.

Journal ArticleDOI
TL;DR: A G S model was able to capture the effects of contrasting hydraulic properties of Picea mariana, Populus tremuloides and Pinus banksiana during stand development after wildfire.
Abstract: We quantified the effect of stand age and tree species composition on canopy transpiration ( E C ) by analysing transpiration per unit leaf area ( E L ) and canopy stomatal conductance ( G S ) for boreal trees comprising a five stand wildfire chronosequence. A total of 196 sap flux sensors were used on 90 trees consisting of Betula papyrifera Marsh (paper birch; present in the youngest stand), Populus tremuloides Michx (quaking aspen), Pinus banksiana Lamb. (jack pine), and Picea mariana (Mill.) (black spruce). While fine roots were positively correlated with stand E C ; leaf area index, basal area, and sapwood area were not. Stands less than 70 years old were dominated by Populus tremuloides and Pinus banksiana and stands greater than 70 years old were composed almost entirely of Picea mariana. As Populus tremuloides and Pinus banksiana increased in size and age, they displayed an increasing sapwood to leaf area ratio ( A S : A L ), a constant minimum leaf water potential (Y L ), and a constant proportionality between G S at low vapour pressure deficit ( DjG Sref ) and the sensitivity of G S to D (‐d ). In contrast, A S : A L , minimum Y L , and the proportionally between ‐d and G Sref decreased with height and age in Picea mariana . A G S model that included the effects of D , A S : A L , tree height, and for Picea mariana an increasing soil to leaf water potential gradient with stand age, was able to capture the effects of contrasting hydraulic properties of Picea mariana , Populus tremuloides and Pinus banksiana during stand development after wildfire.

Journal ArticleDOI
TL;DR: In this article, a forest ecosystem model (CASTANEA) is developed with the aim to bridge the gap between soil-vegetation-atmosphere (SVAT) and growth models.

Journal ArticleDOI
TL;DR: Depending on the risk attitude of growers, incorporation of a maximum transpiration rate trait in sorghum cultivars could be desirable to increase yields in dry years and improve water use efficiency and crop yield stability.
Abstract: Limitations on maximum transpiration rates, which are commonly observed as midday stomatal closure, have been observed even under well-watered conditions. Such limitations may be caused by restricted hydraulic conductance in the plant or by limited supply of water to the plant from uptake by the roots. This behaviour would have the consequences of limiting photosynthetic rate, increasing transpiration efficiency, and conserving soil water. A key question is whether the conservation of water will be rewarded by sustained growth during seed fill and increased grain yield. This simulation analysis was undertaken to examine consequences on sorghum yield over several years when maximum transpiration rate was imposed in a model. Yields were simulated at four locations in the sorghum-growing area of Australia for 115 seasons at each location. Mean yield was increased slightly ( 5 - 7%) by setting maximum transpiration rate at 0.4 mm h(-1). However, the yield increase was mainly in the dry, low-yielding years in which growers may be more economically vulnerable. In years with yield less than similar to 450 g m(-2), the maximum transpiration rate trait resulted in yield increases of 9 - 13%. At higher yield levels, decreased yields were simulated. The yield responses to restricted maximum transpiration rate were associated with an increase in efficiency of water use. This arose because transpiration was reduced at times of the day when atmospheric demand was greatest. Depending on the risk attitude of growers, incorporation of a maximum transpiration rate trait in sorghum cultivars could be desirable to increase yields in dry years and improve water use efficiency and crop yield stability.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the involvement of root and shoot factors in controlling leaf gas exchange of soybean during progressive soil drying, and its implication in improving water use efficiency (WUE) at mild soil water deficits.

Journal ArticleDOI
TL;DR: In this article, seasonal regulation of leaf water potential (ΨL) was studied in eight dominant woody savanna species growing in Brazilian savanna (Cerrado) sites that experience a 5-month dry season.
Abstract: Seasonal regulation of leaf water potential (ΨL) was studied in eight dominant woody savanna species growing in Brazilian savanna (Cerrado) sites that experience a 5-month dry season. Despite marked seasonal variation in precipitation and air saturation deficit (D), seasonal differences in midday minimum ΨL were small in all of the study species. Water use and water status were regulated by a combination of plant physiological and architectural traits. Despite a nearly 3-fold increase in mean D between the wet and dry season, a sharp decline in stomatal conductance with increasing D constrained seasonal variation in minimum ΨL by limiting transpiration per unit leaf area (E). The leaf surface area per unit of sapwood area (LA/SA), a plant architectural index of potential constraints on water supply in relation to transpirational demand, was about 1.5–8 times greater in the wet season compared to the dry season for most of the species. The changes in LA/SA from the wet to the dry season resulted from a reduction in total leaf surface area per plant, which maintained or increased total leaf-specific hydraulic conductance (Gt) during the dry season. The isohydric behavior of Cerrado tree species with respect to minimum ΨL throughout the year thus was the result of strong stomatal control of evaporative losses, a decrease in total leaf surface area per tree during the dry season, an increase in total leaf-specific hydraulic conductance, and a tight coordination between gas and liquid phase conductance. In contrast with the seasonal isohydric behavior of minimum ΨL, predawn ΨL in all species was substantially lower during the dry season compared to the wet season. During the dry season, predawn ΨL was more negative than bulk soil Ψ estimated by extrapolating plots of E versus ΨL to E=0. Predawn disequilibrium between plant and soil Ψ was attributable largely to nocturnal transpiration, which ranged from 15 to 22% of the daily total. High nocturnal water loss may also have prevented internal water storage compartments from being completely refilled at night before the onset of transpiration early in the day.

Journal ArticleDOI
TL;DR: In this paper, the influence of silicon on water use efficiency (WUE) in maize plants (Zea mays L. cv. Nongda108) was investigated and the results showed that plants treated with 2mmol l−1 silicic acid (Si) had 20% higher WUE than that of plants without Si application.
Abstract: The influence of silicon (Si) on water use efficiency (WUE) in maize plants (Zea mays L. cv. Nongda108) was investigated and the results showed that plants treated with 2 mmol L−1 silicic acid (Si) had 20% higher WUE than that of plants without Si application. The WUE was increased up to 35% when the plants were exposed to water stress and this was accounted for by reductions in leaf transpiration and water flow rate in xylem vessels. To examine the effect of silicon on transpiration, changes in stomata opening were compared between Si-treated and nontreated leaves by measuring transpiration rate and leaf resistance. The results showed that the reduction in transpiration following the application of silicon was largely due to a reduction in transpiration rate through stomata, indicating that silicon influences stomata movement. In xylem sap of plants treated with 2 mmol L−1 silicic acid, the Si concentration was 200-fold higher, while the Ca concentration which is mainly determined by the transpi...

Journal ArticleDOI
TL;DR: Elevated CO2 is believed to ameliorate the deleterious O3 effects by reducing g(s) and thus the potential O3 flux into leaves and reduced stomatal density in response to long-term CO2 enrichment suggests sustained reduction in g.

Journal ArticleDOI
TL;DR: The incorporation of a properly controlled fertilization regime involving sufficient levels of K can improve the acclimation of PN to low Ψleaf, increase PN/E of Hibiscus, and may have potential benefit for other woody plants species.
Abstract: The influence of drought stress (DS) upon whole-plant water content, water relations, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis cv. Leprechaun (Hibiscus) plants at three levels of potassium (K) nutritional status were determined after a 21-d gradually imposed DS treatment. Compared to K-deficient plants, adequate K supply improved the leaf water content (LWC) and leaf water relations of Hibiscus by decreasing the Ψ π, and generally sustained rates of net photosynthesis (PN) and transpiration (E), and stomatal conductance (gs), both in DS and non-DS plants. In K-deficient Hibiscus, LWC, turgor potential (Ψ P), and PN, E, and gs as well as instantaneous water-use efficiency, WUE (PN/E) were consistently lower, compared to K-sufficient plants. Carbon isotope discrimination (Δ) was lower (i.e. longterm WUE was greatest) in DS than non-DS plants, but K had no effect on Δ during the 21-d drought treatment period under glasshouse conditions. However, the trend in the Δ value of DS plants suggests that Δ could be a useful index of the response of Hibiscus to DS under glasshouse growing conditions. Thus the incorporation of a properly controlled fertilization regime involving sufficient levels of K can improve the acclimation of PN to low Ψleaf, increase PN/E of Hibiscus, and may have potential benefit for other woody plants species.

Journal ArticleDOI
TL;DR: Sap flow scaled to the plot level and Fw demonstrated similar temporal patterns of water loss suggesting that the mechanisms controlling sap flow of an individual tree also control ecosystem evapotranspiration, but the absolute magnitude of scaled sap flow estimates was consistently lower than Fw.
Abstract: Our objective was to gain a detailed understanding of how photosynthetically active radiation (PAR), vapor pressure deficit (D) and soil water interact to control transpiration in the dominant canopy species of a mixed hardwood forest in northern Lower Michigan. An improved understanding of how these environmental factors affect whole-tree water use in unmanaged ecosystems is necessary in assessing the consequences of climate change on the terrestrial water cycle. We used continuously heated sap flow sensors to measure transpiration in mature trees of four species during two successive drought events. The measurements were scaled to the stand level for comparison with eddy covariance estimates of ecosystem water flux (Fw). Photosynthetically active radiation and D together explained 82% of the daytime hourly variation in plot-level transpiration, and low soil water content generally resulted in increased stomatal sensitivity to increasing D. There were also species-specific responses to drought. Quercus rubra L. showed low water use during both dry and wet conditions, and during periods of high D. Among the study species, Acer rubrum L. showed the greatest degree of stomatal closure in response to low soil water availability. Moderate increases in stomatal sensitivity to D during dry periods were observed in Populus grandidentata Michx. and Betula papyrifera Marsh. Sap flow scaled to the plot level and Fw demonstrated similar temporal patterns of water loss suggesting that the mechanisms controlling sap flow of an individual tree also control ecosystem evapotranspiration. However, the absolute magnitude of scaled sap flow estimates was consistently lower than Fw. We conclude that species-specific responses to PAR, D and soil water content are key elements to understanding current and future water fluxes in this ecosystem.

Journal ArticleDOI
12 Jan 2005-Planta
TL;DR: It is demonstrated that the better performance of the ear under water stress (compared to the flag leaf) is not related to C4 or CAM photosynthesis, and drought tolerance of theEar is explained by its higher RWC in drought, and osmotic adjustment and xeromorphic traits of ear parts may be responsible.
Abstract: The photosynthetic characteristics of the ear and flag leaf of well-watered (WW) and water-stressed (WS) durum wheat (Triticum turgidum L. var. durum) were studied in plants grown under greenhouse and Mediterranean field conditions. Gas exchange measurements simultaneously with modulated chlorophyll fluorescence were used to study the response of the ear and flag leaf to CO2 and O2 during photosynthesis. C4 metabolism was identified by assessing the sensitivity of photosynthetic rate and electron transport to oxygen. The presence of CAM metabolism was assessed by measuring daily patterns of stomatal conductance and net CO2 assimilation. In addition, the histological distribution of Rubisco protein in the ear parts was studied by immunocytochemical localisation. Relative water content (RWC) and osmotic adjustment (osmotic potential at full turgor) were also measured in these organs. Oxygen sensitivity of the assimilation rate and electron transport, the lack of Rubisco compartmentalisation in the mesophyll tissues and the gas-exchange pattern at night indicated that neither C4 nor CAM metabolism occurs in the ear of WW or WS plants. Nevertheless, photosynthetic activity of the flag leaf was more affected by WS conditions than that of the ear, under both growing conditions. The lower sensitivity under water stress of the ear than of the flag leaf was linked to higher RWC and osmotic adjustment in the ear bracts and awns. We demonstrate that the better performance of the ear under water stress (compared to the flag leaf) is not related to C4 or CAM photosynthesis. Rather, drought tolerance of the ear is explained by its higher RWC in drought. Osmotic adjustment and xeromorphic traits of ear parts may be responsible.

Journal Article
TL;DR: The relationship between vine nutrition and deficit irrigation clearly requires careful guidance to make it a happy one as mentioned in this paper, which is why it is important to understand the relationship between the two factors.
Abstract: Water and nutrients exist together in close association because plant-available nutrient ions are dissolved in the soil solution and nutrient uptake by grapevines depends on water flow through the soil-root-shoot pathway. Leaf transpiration generates the tension necessary for the roots to absorb this essential solution, but in a drying soil, uptake of water and nutrients becomes progressively more difficult for grapevines. In addition, application of nitrogen fertilizer can increase the vine’s susceptibility to drought, because nitrogen favors shoot growth over root growth. However, because growth is more sensitive than photosynthesis to both water and nitrogen shortage, deficit irrigation may be used in conjunction with limited nitrogen application to control canopy development, yield, and fruit composition. Growth is the “pacemaker” for nutrient uptake by the vine, hence the growth reduction induced by water deficit also decreases vine nutrient requirements. Nevertheless, reducing water or nitrogen supply can be perceived as a stress by the vine, and its response depends on developmental status. For instance, water deficit applied before fruit set may reduce cluster and berry numbers, especially if combined with nitrogen shortage. Properly regulated deficit irrigation in combination with low to moderate rates of nitrogen application between bloom and veraison reduces canopy size, berry size, and yield, accelerates ripening, improves fruit color, and reduces disease incidence. However, this strategy also reduces yeast-assimilable nitrogen in the fruit, thereby increasing the risk of sluggish or stuck fermentation. Moreover, if the water or nitrogen deficit becomes too severe, fruit quality suffers from both limited assimilate supply and excessive fruit exposure to sunlight. The relationship between vine nutrition and deficit irrigation clearly requires careful guidance to make it a happy one.

Journal ArticleDOI
TL;DR: In this paper, the results of 2 years combined field measurements of water vapor exchange with the atmosphere and simplified model calculations at Lambir Hills National Park, Sarawak, Malaysia (4812 0 N, 114802 0 E).

Journal ArticleDOI
TL;DR: In this paper, the authors investigated changes in the pattern of stand water use in a chronosequence of four even-aged maritime pine stands, differing in age (10, 32, 54, and 91-year old) and growing under similar environmental conditions.

Journal ArticleDOI
TL;DR: Disease progress of downy mildew on cucumber leaves was shown to be associated with various changes in transpiration depending on the stage of pathogenesis, resulting in a considerable heterogeneity in temperature distribution of infected leaves.
Abstract: Disease progress of downy mildew on cucumber leaves, caused by the obligate biotrophic pathogen Pseudoperonospora cubensis, was shown to be associated with various changes in transpiration depending on the stage of pathogenesis. Spatial and temporal changes in the transpiration rate of infected and noninfected cucumber leaves were visualized by digital infrared thermography in combination with measurements of gas exchange as well as microscopic observations of pathogen growth within plant tissue and stomatal aperture during pathogenesis. Transpiration of cucumber leaf tissue was correlated to leaf temperature in a negative linear manner (r = -0.762, P < 0.001, n = 18). Leaf areas colonized by Pseudoperonospora cubensis exhibited a presymptomatic decrease in leaf tem perature up to 0.8 degrees C lower than noninfected tissue due to abnormal stomata opening. The appearance of chlorosis was associated with a cooling effect caused by the loss of integrity of cell membranes leading to a larger amount of apoplastic water in infected tissue. Increased water loss from damaged cells and the inability of infected plant tissue to regulate stomatal opening promoted cell death and desiccation of dying tissue. Ultimately, the lack of natural cooling from necrotic tissue was associated with an increase in leaf temperature. These changes in leaf temperature during downy mildew development resulted in a considerable heterogeneity in temperature distribution of infected leaves. The maximum temperature difference within a thermogram of cucumber leaves allowed the discrimination between healthy and infected leaves before visible symptoms appeared.

Journal ArticleDOI
TL;DR: In this paper, the authors show that thinning decreases the deposition velocities of fine particles as expected but does not reduce the carbon sink, water vapor flux, or ozone deposition.
Abstract: [1] Thinning is a routine forest management operation that changes tree spacing, number, and size distribution and affects the material flows between vegetation and the atmosphere. Here, using direct micrometeorological ecosystem-scale measurements, we show that in a boreal pine forest, thinning decreases the deposition velocities of fine particles as expected but does not reduce the carbon sink, water vapor flux, or ozone deposition. The thinning decreased the all-sided leaf area index from 8 to 6, and we suggest that the redistribution of sources and sinks within the ecosystem compensated for this reduction in foliage area. In the case of water vapor and O 3 , changes in light penetration and among-tree competition seem to increase individual transpiration rates and lead to larger stomatal apertures, thus enhancing also O 3 deposition. In the case of CO 2 , increased ground vegetation assimilation and decreased autotrophic respiration seem to cancel out opposite changes in canopy assimilation and heterotrophic respiration. Current soil-vegetation-atmosphere transfer models should be able to reproduce these observations.

Journal ArticleDOI
TL;DR: It is suggested that TuMV infection caused a reduction in photosynthesis in stem mustard by a series of processes, including stomatal and non-stomatal limitations during disease stress.

Journal ArticleDOI
TL;DR: Assessment of genotypic diversity for drought-related morpho-physiological traits in sugar beet suggests that succulence index and wilting score could be used to cull inferior plants in early stages of breeding programs, and green foliage cover and patterns of water use could help identify superior genotypes in elite germplasm.

Journal ArticleDOI
TL;DR: An upper limit to transpiration in the investigated trees is indicated, even when soil water supply was not limiting, which indicates whole-plant water use was more pronounced among trees differing in size and crown status than among species.
Abstract: We investigated tree water relations in a lower tropical montane rain forest at 1950-1975 m a.s.l. in southern Ecuador. During two field campaigns, sap flow measurements (Granier-type) were carried out on 16 trees (14 species) differing in size and position within the forest stand. Stomatal conductance (g(s)) and leaf transpiration (E(l)) were measured on five canopy trees and 10 understory plants. Atmospheric coupling of stomatal transpiration was good (decoupling coefficient Omega = 0.25-0.43), but the response of g(s) and E(l) to the atmospheric environment appeared to be weak as a result of the offsetting effects of vapor pressure deficit (VPD) and photosynthetic photon flux (PPF) on g(s). In contrast, sap flow (F) followed these atmospheric parameters more precisely. Daily F depended chiefly on PPF sums, whereas on short time scales, VPD impeded transpiration when it exceeded a value of 1-1.2 kPa. This indicates an upper limit to transpiration in the investigated trees, even when soil water supply was not limiting. Mean g(s) was 165 mmol m(-2) s(-1) for the canopy trees and about 90 mmol m(-2) s(-1) for the understory species, but leaf-to-leaf as well as tree-to-tree variation was large. Considering whole-plant water use, variation in the daily course of F was more pronounced among trees differing in size and crown status than among species. Daily F increased sharply with stem diameter and tree height, and ranged between 80 and 120 kg day(-1) for dominant canopy trees, but was typically well below 10 kg day(-1) for intermediate and suppressed trees of the forest interior.

Journal ArticleDOI
TL;DR: Luomala et al. as mentioned in this paper studied the effects of CO 2 and temperature on the stomatal density, anatomy and nutrient concentrations of Pinus sylvestris needles.
Abstract: Stomatal density, anatomy and nutrient concentrations of Scots pine ( Pinus sylvestris L.) needles were studied during 3 years of growth at elevated CO 2 (693 ± 30 m mol mol - 1 ), at elevated temperature (ambient + 2·8-6·2 ∞ C depending on the time of the year) and in a combination of elevated CO 2 and temperature in closed-top chambers. The treatments were started in August 1996. At elevated temperature, the needles that were grown in the first year (i.e. the 1997 cohort) were thinner, had thinner mesophyll in the abaxial side, thinner vascular cylinder and lower stomatal density than those grown at ambient temperature. The proportion of mesophyll area occupied by vascular cylinder or inter- cellular spaces were not changed. Lower stomatal density apparently did not lead to decreased use of water, as these needles had higher concentrations of less mobile nutrients (Ca, Mg, B, Zn and Mn), which could indicate increased total transpiration. In the 1997 and 1998 cohorts, elevation of temperature decreased concentrations of N, P, K, S and Cu. In the 1999 cohort, contradictory, higher concentrations of N and S at elevated temperature may be related to increased nutrient mineralization in the soil. Elevation of CO 2 did not affect stomatal density, needle thickness, thick- ness of epidermis or hypodermis, vascular cylinder or inter- cellular spaces. Concentrations of N, P, S and Cu decreased at elevated CO 2 . Reductions were transient and most dis- tinct in the 1997 cohort. The effects of CO 2 and temperature were in some cases interactive, which meant that in the combined treatment stomatal density decreased less than at elevated temperature, and concentrations of nutrients decreased less than expected on the basis of separate treat- ments, whereas the thickness of the epidermis and hypo- dermis decreased more than in the separate treatments. In conclusion, alterations in the anatomy and stomatal density of Scots pine needles were more distinct at elevated tem- perature than at elevated CO 2 . Both elevated CO 2 and tem- perature-induced changes in nutrient concentrations that partly corresponded to the biochemical and photosynthetic alterations in the same cohorts (Luomala et al. Plant, Cell and Environment 26, 645-660, 2003) Reductions in nutri- ent concentrations and alterations in the anatomy were transient and more evident in the needle cohort that was grown in the first treatment year.