scispace - formally typeset
Search or ask a question

Showing papers on "VNIR published in 2019"


Journal ArticleDOI
14 Mar 2019-Sensors
TL;DR: The study reveals that DenseNet is more effective for urban tree species classification as it outperforms the popular RF and SVM techniques when working with highly complex image scenes regardless of training sample size.
Abstract: Urban areas feature complex and heterogeneous land covers which create challenging issues for tree species classification. The increased availability of high spatial resolution multispectral satellite imagery and LiDAR datasets combined with the recent evolution of deep learning within remote sensing for object detection and scene classification, provide promising opportunities to map individual tree species with greater accuracy and resolution. However, there are knowledge gaps that are related to the contribution of Worldview-3 SWIR bands, very high resolution PAN band and LiDAR data in detailed tree species mapping. Additionally, contemporary deep learning methods are hampered by lack of training samples and difficulties of preparing training data. The objective of this study was to examine the potential of a novel deep learning method, Dense Convolutional Network (DenseNet), to identify dominant individual tree species in a complex urban environment within a fused image of WorldView-2 VNIR, Worldview-3 SWIR and LiDAR datasets. DenseNet results were compared against two popular machine classifiers in remote sensing image analysis, Random Forest (RF) and Support Vector Machine (SVM). Our results demonstrated that: (1) utilizing a data fusion approach beginning with VNIR and adding SWIR, LiDAR, and panchromatic (PAN) bands increased the overall accuracy of the DenseNet classifier from 75.9% to 76.8%, 81.1% and 82.6%, respectively. (2) DenseNet significantly outperformed RF and SVM for the classification of eight dominant tree species with an overall accuracy of 82.6%, compared to 51.8% and 52% for SVM and RF classifiers, respectively. (3) DenseNet maintained superior performance over RF and SVM classifiers under restricted training sample quantities which is a major limiting factor for deep learning techniques. Overall, the study reveals that DenseNet is more effective for urban tree species classification as it outperforms the popular RF and SVM techniques when working with highly complex image scenes regardless of training sample size.

138 citations


Journal ArticleDOI
TL;DR: Information from multi-/hyperspectral TIR together with those from VNIR/SWIR and SIF sensors within a multi-sensor approach can provide profound insights to actual plant (water) status and the rationale of physiological and biochemical changes.
Abstract: Thermal infrared (TIR) multi-/hyperspectral and sun-induced fluorescence (SIF) approaches together with classic solar-reflective (visible, near-, and shortwave infrared reflectance (VNIR)/SWIR) hyperspectral remote sensing form the latest state-of-the-art techniques for the detection of crop water stress. Each of these three domains requires dedicated sensor technology currently in place for ground and airborne applications and either have satellite concepts under development (e.g., HySPIRI/SBG (Surface Biology and Geology), Sentinel-8, HiTeSEM in the TIR) or are subject to satellite missions recently launched or scheduled within the next years (i.e., EnMAP and PRISMA (PRecursore IperSpettrale della Missione Applicativa, launched on March 2019) in the VNIR/SWIR, Fluorescence Explorer (FLEX) in the SIF). Identification of plant water stress or drought is of utmost importance to guarantee global water and food supply. Therefore, knowledge of crop water status over large farmland areas bears large potential for optimizing agricultural water use. As plant responses to water stress are numerous and complex, their physiological consequences affect the electromagnetic signal in different spectral domains. This review paper summarizes the importance of water stress-related applications and the plant responses to water stress, followed by a concise review of water-stress detection through remote sensing, focusing on TIR without neglecting the comparison to other spectral domains (i.e., VNIR/SWIR and SIF) and multi-sensor approaches. Current and planned sensors at ground, airborne, and satellite level for the TIR as well as a selection of commonly used indices and approaches for water-stress detection using the main multi-/hyperspectral remote sensing imaging techniques are reviewed. Several important challenges are discussed that occur when using spectral emissivity, temperature-based indices, and physically-based approaches for water-stress detection in the TIR spectral domain. Furthermore, challenges with data processing and the perspectives for future satellite missions in the TIR are critically examined. In conclusion, information from multi-/hyperspectral TIR together with those from VNIR/SWIR and SIF sensors within a multi-sensor approach can provide profound insights to actual plant (water) status and the rationale of physiological and biochemical changes. Synergistic sensor use will open new avenues for scientists to study plant functioning and the response to environmental stress in a wide range of ecosystems.

133 citations


Journal ArticleDOI
TL;DR: In this paper, the authors performed a comprehensive assessment of WorldView-3 images acquired in the dry and wet seasons for tree species discrimination in tropical semi-deciduous forests, and applied an individual tree crown (ITC)-based approach that employed pan-sharpened VNIR bands and gray level co-occurrence matrix texture features.
Abstract: Tropical forest conservation and management can significantly benefit from information about the spatial distribution of tree species. Very-high resolution (VHR) spaceborne platforms have been hailed as a promising technology for mapping tree species over broad spatial extents. WorldView-3, the most advanced VHR sensor, provides spectral data in 16 bands covering the visible to near-infrared (VNIR, 400–1040 nm) and shortwave-infrared (SWIR, 1210–2365 nm) wavelength ranges. It also collects images at unprecedented levels of details using a panchromatic band with 0.3-m of spatial resolution. However, the potential of WorldView-3 at its full spectral and spatial resolution for tropical tree species classification remains unknown. In this study, we performed a comprehensive assessment of WorldView-3 images acquired in the dry and wet seasons for tree species discrimination in tropical semi-deciduous forests. Classification experiments were performed using VNIR individually and combined with SWIR channels. To take advantage of the sub-metric resolution of the panchromatic band for classification, we applied an individual tree crown (ITC)-based approach that employed pan-sharpened VNIR bands and gray level co-occurrence matrix texture features. We determined whether the combination of images from the two annual seasons improves the classification accuracy. Finally, we investigated which plant traits influenced species detection. The new SWIR sensing capabilities of WorldView-3 increased the average producer’s accuracy up to 7.8%, by enabling the detection of non-photosynthetic vegetation within ITCs. The combination of VNIR bands from the two annual seasons did not improve the classification results when compared to the results obtained using images from each season individually. The use of VNIR bands at their original 1.2-m spatial resolution yielded average producer’s accuracies of 43.1 ± 3.1% and 38.8 ± 3% in the wet and dry seasons, respectively. The ITC-based approach improved the accuracy to 70 ± 8% in the wet and 68.4 ± 7.4% in the dry season. Texture analysis of the panchromatic band enabled the detection of species-specific differences in crown structure, which improved species detection. The use of texture analysis, pan-sharpening, and ITC delineation is a potential approach to perform tree species classification in tropical forests with WorldView-3 satellite images.

109 citations


Journal ArticleDOI
15 Feb 2019-Geoderma
TL;DR: In this paper, the authors examined the feasibility of using soil reflectance spectra to estimate the concentrations of Cd, Pb, As, Cr, Cu and Zn in suburban soils, and compared the performances of different spectral pretreatments and explored the mechanism underlying the estimation of heavy metal concentration from VNIR spectra.

93 citations


Journal ArticleDOI
TL;DR: The SVM method proved to be a good classifier for the tree species recognition task, even in the presence of a high number of classes and a small dataset.
Abstract: The use of remote sensing data for tree species classification in tropical forests is still a challenging task, due to their high floristic and spectral diversity. In this sense, novel sensors on board of unmanned aerial vehicle (UAV) platforms are a rapidly evolving technology that provides new possibilities for tropical tree species mapping. Besides the acquisition of high spatial and spectral resolution images, UAV-hyperspectral cameras operating in frame format enable to produce 3D hyperspectral point clouds. This study investigated the use of UAV-acquired hyperspectral images and UAV-photogrammetric point cloud (PPC) for classification of 12 major tree species in a subtropical forest fragment in Southern Brazil. Different datasets containing hyperspectral visible/near-infrared (VNIR) bands, PPC features, canopy height model (CHM), and other features extracted from hyperspectral data (i.e., texture, vegetation indices-VIs, and minimum noise fraction-MNF) were tested using a support vector machine (SVM) classifier. The results showed that the use of VNIR hyperspectral bands alone reached an overall accuracy (OA) of 57% (Kappa index of 0.53). Adding PPC features to the VNIR hyperspectral bands increased the OA by 11%. The best result was achieved combining VNIR bands, PPC features, CHM, and VIs (OA of 72.4% and Kappa index of 0.70). When only the CHM was added to VNIR bands, the OA increased by 4.2%. Among the hyperspectral features, besides all the VNIR bands and the two VIs (NDVI and PSSR), the first four MNF features and the textural mean of 565 and 679 nm spectral bands were pointed out as more important to discriminate the tree species according to Jeffries–Matusita (JM) distance. The SVM method proved to be a good classifier for the tree species recognition task, even in the presence of a high number of classes and a small dataset.

85 citations


Journal ArticleDOI
TL;DR: The Advanced Hyperspectral Imager (AHSI) as discussed by the authors is the first spaceborne hyperspectral sensor that utilizes both a convex-grating spectrophotometry and an improved three-concentric-mirror (Offner) configuration.
Abstract: This article introduces the design and imaging principles of the Advanced Hyperspectral Imager (AHSI) aboard China's GaoFen-5 satellite. The AHSI is a visible and nearinfrared (VNIR)/short-wave infrared (SWIR) HSI. It is the first spaceborne hyperspectral sensor that utilizes both a convex-grating spectrophotometry and an improved three-concentric-mirror (Offner) configuration. It has 330 spectral bands, a 60-km swath width, and a 30-m spatial resolution. Various tests have been designed to evaluate its imaging performance, and the results indicate that the AHSI's performance is comparable to other spaceborne HSIs launched recently and those scheduled for launch in the next few years. The AHSI has the capability to detect and identify different ground objects.

70 citations


Journal ArticleDOI
TL;DR: This work proposes a novel deep learning method, namely deep progressively expanded network (dPEN), for mapping nineteen different objects including crop types, weeds and crop residues, in a heterogeneous agricultural field using WorldView-3 (WV-3) imagery.

66 citations


Journal ArticleDOI
TL;DR: In this article, the main principles of imaging spectroscopy rely on the exploitation of light dispersion technologies to split the incoming light through a telescope before being projected onto detector arrays.
Abstract: Imaging spectroscopy in the visible-to-shortwave infrared wavelength range (VSWIR), or nowadays more commonly known as ‘hyperspectral imaging’, for terrestrial Earth Observation remote sensing, dates back to the early 1980s when its development started with mainly airborne demonstrations. From its initial use as a research tool, imaging spectroscopy encompassing the VSWIR spectral range has gradually evolved towards operational and commercial applications. Today, it is one of the fastest growing research areas in remote sensing owing to its diagnostic power by means of discrete spectral bands that are contiguously sampled over the spectral range with which a target is observed. The main principles of imaging spectroscopy rely on the exploitation of light dispersion technologies to split the incoming light through a telescope before being projected onto detector arrays. The light dispersion can be achieved by using prism or diffractive grating optical systems, perpetually aiming for improved performances in terms of efficiency, straylight rejection, and polarization sensitivity. The sensor technique has been first used in airborne imaging spectroscopy since the early 1980s and later in spaceborne hyperspectral missions from the end of the 1990s onwards. Currently, several hyperspectral spaceborne systems are under development and in preparation to be launched within the next few years. Through hyperspectral remote sensing, physical, chemical, and biological components of the observed matter can be separated and resolved thus providing a spectral ‘fingerprint’. The analyses of the spectral absorptions often give rise to quantitative retrievals of components of the observed target. The derived information is vital for the generation of a wide variety of new quantitative products and services in the domain of agriculture, food security, raw materials, soils, biodiversity, environmental degradation and hazards, inland and coastal waters, snow hydrology and forestry. Many of these are relevant to various international policies and conventions. Originally developed as a powerful detection and analysis tool for applications predominantly related to planetary exploration and non-renewable resources, imaging spectroscopy now covers many disciplines in atmospheric, terrestrial vegetation, cryosphere, and marine research and application fields. There is an increasing number of visible/near-infrared (VNIR) imaging spectrometers emerging also as small payloads on small satellites and cubesats, built and launched by small-medium enterprises. These are targeted to address commercial applications mainly in agriculture, resources and environmental management, and hazard observations.

52 citations


Journal ArticleDOI
TL;DR: The findings and methods from this study demonstrate the high potential of high-throughput hyperspectral imagery for estimating and visualizing the distribution of plant chemical properties.
Abstract: Quantifying plant water content and nitrogen levels and determining water and nitrogen phenotypes is important for crop management and achieving optimal yield and quality. Hyperspectral methods have the potential to advance high throughput phenotyping efforts by providing a rapid, accurate and non-destructive alternative for estimating biochemical and physiological plant traits. Our study (i) acquired hyperspectral images of wheat plants using a high throughput phenotyping system, (ii) developed regression models capable of predicting water and nitrogen levels of wheat plants and (iii) applied the regression coefficients from the best-performing models to hyperspectral images in order to develop prediction maps to visualise nitrogen and water distribution within plants. Hyperspectral images were collected of four wheat (Triticum aestivum) genotypes grown in nine soil nutrient conditions and under two water treatments. Five multivariate regression methods in combination with ten spectral pre-processing techniques were employed to find a model with strong predictive performance. Visible and near infrared wavelengths (VNIR: 400-1000nm) alone were not sufficient to accurately predict water and nitrogen content (validation R2=0.56 and R2=0.59 respectively) but model accuracy was improved when shortwave-infrared wavelengths (SWIR: 1000-2500nm) were incorporated (validation R2=0.63 and R2=0.66 respectively). Wavelength reduction produced equivalent model accuracies while reducing model size and complexity (validation R2=0.69 and R2=0.66 for water and nitrogen respectively). Developed distribution maps provided a visual representation of the concentration and distribution of water within plants whilst nitrogen maps seemed to suffer from noise. The findings and methods from this study demonstrate the high potential of high-throughput hyperspectral imagery for estimating and visualising the distribution of plant chemical properties.

48 citations


Journal ArticleDOI
04 Apr 2019-Sensors
TL;DR: A tunable HSL technology using an acousto-optic tunable filter (AOTF) as a spectroscopic device was proposed, designed, and tested to address the issue of insufficient spectral information in HSLs.
Abstract: Hyperspectral LiDAR (HSL) technology can obtain spectral and ranging information from targets by processing the recorded waveforms and measuring the time of flight (ToF). With the development of the supercontinuum laser (SCL), it is technically easier to develop an active hyperspectral LiDAR system that can simultaneously collect both spatial information and extensive spectral information from targets. Compared with traditional LiDAR technology, which can only obtain range and intensity information at the selected spectral wavelengths, HSL detection technology has demonstrated its potential and adaptability for various quantitative applications from its spectrally resolved waveforms. However, with most previous HSLs, the collected spectral information is discrete, and such information might be insufficient and restrict the further applicability of the HSLs. In this paper, a tunable HSL technology using an acousto-optic tunable filter (AOTF) as a spectroscopic device was proposed, designed, and tested to address this issue. Both the general range precision and the accuracy of the spectral measurement were evaluated. By tuning the spectroscopic device in the time dimension, the proposed AOTF-HSL could achieve backscattered echo with continuous coverage of the full spectrum of 500-1000 nm, which had the unique characteristics of a continuous spectrum in the visible and near infrared (VNIR) regions with 10 nm spectral resolution. Yellow and green leaves from four plants (aloe, dracaena, balata, and radermachera) were measured using the AOTF-HSL to assess its feasibility in agriculture application. The spectral profiles measured by a standard spectrometer (SVC© HR-1024) were used as a reference for evaluating the measurements of the AOTF-HSL. The difference between the spectral measurements collected from active and passive instruments was minor. The comparison results show that the AOTF-based consecutive and high spectral resolution HSL was effective for this application.

37 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined atmospheric compensation of hyperspectral data in the visible and near-infrared (VNIR)-short-wave infrared (SWIR) region.
Abstract: In this tutorial overview, we examine atmospheric compensation of hyperspectral data in the visible and nearinfrared (VNIR)-short-wave infrared (SWIR) region. The background is discussed, including the motivation for and a brief history of image compensation. Atmospheric characteristics are presented to highlight important optical effects that must be mitigated (i.e., atmospheric absorption and scattering). A full radiative transfer (RT) expression with simplifications is presented, resulting in formulations that are solved in terms of reflectance.

Journal ArticleDOI
21 Jun 2019-Sensors
TL;DR: A straight-forward integration of visible/near-infrared (VNIR), short-wave infrared (SWIR) and long- wave infrared (LWIR) data for sensors with highly different spatial and spectral resolution that greatly improves drillcore mapping is shown.
Abstract: Rapid, efficient and reproducible drillcore logging is fundamental in mineral exploration. Drillcore mapping has evolved rapidly in the recent decade, especially with the advances in hyperspectral spectral imaging. A wide range of imaging sensors is now available, providing rapidly increasing spectral as well as spatial resolution and coverage. However, the fusion of data acquired with multiple sensors is challenging and usually not conducted operationally. We propose an innovative solution based on the recent developments made in machine learning to integrate such multi-sensor datasets. Image feature extraction using orthogonal total variation component analysis enables a strong reduction in dimensionality and memory size of each input dataset, while maintaining the majority of its spatial and spectral information. This is in particular advantageous for sensors with very high spatial and/or spectral resolution, which are otherwise difficult to jointly process due to their large data memory requirements during classification. The extracted features are not only bound to absorption features but recognize specific and relevant spatial or spectral patterns. We exemplify the workflow with data acquired with five commercially available hyperspectral sensors and a pair of RGB cameras. The robust and efficient spectral-spatial procedure is evaluated on a representative set of geological samples. We validate the process with independent and detailed mineralogical and spectral data. The suggested workflow provides a versatile solution for the integration of multi-source hyperspectral data in a diversity of geological applications. In this study, we show a straight-forward integration of visible/near-infrared (VNIR), short-wave infrared (SWIR) and long-wave infrared (LWIR) data for sensors with highly different spatial and spectral resolution that greatly improves drillcore mapping.

Proceedings ArticleDOI
30 Aug 2019
TL;DR: This contribution reports on a general description of HyperScout-2, the first ever demonstration of on-board Artificial Intelligence applied to the combination of hyperspectral and thermal imaging, and the way the space asset will be exploited.
Abstract: cosine Remote Sensing is leading the first ever demonstration of on-board Artificial Intelligence (AI) applied to the combination of hyperspectral and thermal imaging. The sensing device is a miniaturized reflective optical instrument equipped with unprecedented processing capabilities. The European Space Agency (ESA) has contracted cosine Remote Sensing to highly integrate Thermal Infrared (TIR) technologies into a miniaturized Visible-Near-InfraRed (VNIR) hyperspectral imager and to fit the combined spectral channels in a volume of less than two litres. The imager is named HyperScout-2 as it will use the HyperScout-1 platform, that has flight heritage, as building block to further integrate spectral channels. HyperScout-2 is equipped with a hybrid processing platform composed of a CPU, GPU and VPU. The VPU is a state of art vision processing unit developed by Intel and is for the first time flew in space as part of HyperScout-2. HyperScout-2 will enable experimental programs to investigate the use of Artificial Intelligence for a variety of applications in the field of object detection and data inference. The first application that will be run on is cloud screening. HyperScout-2 will be used as in-orbit test-bed to benchmark the performance of such a miniaturized class of systems as well as to perform hands-on investigations to forecast the benefits of combining frequent coregistrated measurements in the VNIR and TIR from nanosatellites, with less frequent but very accurate measurements performed by institutional satellites such as the Copernicus fleet. This initiative is named PhiSat-1 and is part of the ESA EOP initiative to leverage small satellites to foster technology breakthrough developments. This contribution reports on a general description of HyperScout-2 as well as about the fast track program in which is implemented. We will also highlight the way the space asset will be exploited especially regarding the understanding of the potential of small systems deployed within small satellites constellation if integrated into ecosystems made of small and large systems. The PhiSat-1 is implemented as an enhancement of the FSSCat mission in a 6U cubesat based on Tyvak International platform integrating cosine Remote Sensing hyperspectral/thermal system. The cloud screening application is led by cosine Remote Sensing and supported by Sinergise, Ubotica and University of Pisa.

Journal ArticleDOI
12 Dec 2019-Sensors
TL;DR: The results demonstrate that the proposed methodology based on the genetic algorithm optimization slightly improves the accuracy of the tumor identification in ~5%, using only 48 bands, with respect to the reference results obtained with 128 bands, offering the possibility of developing customized acquisition sensors that could provide real-time HS imaging.
Abstract: Hyperspectral imaging (HSI) is a non-ionizing and non-contact imaging technique capable of obtaining more information than conventional RGB (red green blue) imaging. In the medical field, HSI has commonly been investigated due to its great potential for diagnostic and surgical guidance purposes. However, the large amount of information provided by HSI normally contains redundant or non-relevant information, and it is extremely important to identify the most relevant wavelengths for a certain application in order to improve the accuracy of the predictions and reduce the execution time of the classification algorithm. Additionally, some wavelengths can contain noise and removing such bands can improve the classification stage. The work presented in this paper aims to identify such relevant spectral ranges in the visual-and-near-infrared (VNIR) region for an accurate detection of brain cancer using in vivo hyperspectral images. A methodology based on optimization algorithms has been proposed for this task, identifying the relevant wavelengths to achieve the best accuracy in the classification results obtained by a supervised classifier (support vector machines), and employing the lowest possible number of spectral bands. The results demonstrate that the proposed methodology based on the genetic algorithm optimization slightly improves the accuracy of the tumor identification in ~5%, using only 48 bands, with respect to the reference results obtained with 128 bands, offering the possibility of developing customized acquisition sensors that could provide real-time HS imaging. The most relevant spectral ranges found comprise between 440.5-465.96 nm, 498.71-509.62 nm, 556.91-575.1 nm, 593.29-615.12 nm, 636.94-666.05 nm, 698.79-731.53 nm and 884.32-902.51 nm.

Journal ArticleDOI
01 May 2019-Sensors
TL;DR: It is demonstrated that hyperspectral imaging technique with data fusion holds the potential for rapid and nondestructive sorting of traditional Chinese medicines (TCMs) and is more rapid and possible for industry applications.
Abstract: Hyperspectral data processing technique has gained increasing interests in the field of chemical and biomedical analysis. However, appropriate approaches to fusing features of hyperspectral data-cube are still lacking. In this paper, a new data fusion approach was proposed and applied to discriminate Rhizoma Atractylodis Macrocephalae (RAM) slices from different geographical origins using hyperspectral imaging. Spectral and image features were extracted from hyperspectral data in visible and near-infrared (VNIR, 435-1042 nm) and short-wave infrared (SWIR, 898-1751 nm) ranges, respectively. Effective wavelengths were extracted from pre-processed spectral data by successive projection algorithm (SPA). Meanwhile, gray-level co-occurrence matrix (GLCM) and gray-level run-length matrix (GLRLM) were employed to extract textural variables. The fusion of spectrum-image in VNIR and SWIR ranges (VNIR-SWIR-FuSI) was implemented to integrate those features on three fusion dimensions, i.e., VNIR and SWIR fusion, spectrum and image fusion, and all data fusion. Based on data fusion, partial least squares-discriminant analysis (PLS-DA) and support vector machine (SVM) were utilized to establish calibration models. The results demonstrated that VNIR-SWIR-FuSI could achieve the best accuracies on both full bands (97.3%) and SPA bands (93.2%). In particular, VNIR-SWIR-FuSI on SPA bands achieved a classification accuracy of 93.2% with only 23 bands, which was significantly better than those based on spectra (80.9%) or images (79.7%). Thus it is more rapid and possible for industry applications. The current study demonstrated that hyperspectral imaging technique with data fusion holds the potential for rapid and nondestructive sorting of traditional Chinese medicines (TCMs).

Journal ArticleDOI
TL;DR: Evaluating the efficiency of visible near-infrared (VNIR) and shortwave near- Infrared (SWIR) hyperspectral data to identify the most informative hyperspectrals responding to SOC content in agricultural soils finds some bands in agreement with the absorption features of SOC reported in the literature, whereas others have not been reported before.
Abstract: The recent use of hyperspectral remote sensing imagery has introduced new opportunities for soil organic carbon (SOC) assessment and monitoring. These data enable monitoring of a wide variety of soil properties but pose important methodological challenges. Highly correlated hyperspectral spectral bands can affect the prediction and accuracy as well as the interpretability of the retrieval model. Therefore, the spectral dimension needs to be reduced through a selection of specific spectral bands or regions that are most helpful to describing SOC. This study evaluates the efficiency of visible near-infrared (VNIR) and shortwave near-infrared (SWIR) hyperspectral data to identify the most informative hyperspectral bands responding to SOC content in agricultural soils. Soil samples (111) were collected over an agricultural field in southern Ontario, Canada and analyzed against two hyperspectral datasets: An airborne Nano-Hyperspec imaging sensor with 270 bands (400–1000 nm) and a laboratory hyperspectral dataset (ASD FieldSpec 3) along the 1000–2500 nm range (NIR-SWIR). In parallel, a multimethod modeling approach consisting of random forest, support vector machine, and partial least squares regression models was used to conduct band selections and to assess the validity of the selected bands. The multimethod model resulted in a selection of optimal band or regions over the VNIR and SWIR sensitive to SOC and potentially for mapping. The bands that achieved the highest respective importance values were 711–715, 727, 986–998, and 433–435 nm regions (VNIR); and 2365–2373, 2481–2500, and 2198–2206 nm (NIR-SWIR). Some of these bands are in agreement with the absorption features of SOC reported in the literature, whereas others have not been reported before. Ultimately, the selection of optimal band and regions is of importance for quantification of agricultural SOC and would provide a new framework for creating optimized SOC-specific sensors.

Journal ArticleDOI
TL;DR: The results prove that the hyperspectral technique can be used for predicting apple bruising time, which will help to assess the internal quality and safety of apples.
Abstract: Bruising time of apple is one of the most important factors for internal quality assessment. The present study aimed to establish a non-destructive method for the classification of apple bruising time using visible and near-infrared (VNIR) hyperspectral imaging. In this study, VNIR hyperspectral images were obtained and analyzed at seven bruising periods. Moreover, regions of interest (ROIs) were chosen to construct the bruised region classification model, and spectra of bruised regions were collected and resampled based on four different methods. Subsequently, machine learning algorithms were employed and used for dealing with the time classification model of apples. In order to reduce data redundancy and improve the accuracy of the classification model, a tree-based assembling learning model was used to select feature wavelengths, and linear discriminant analysis (LDA) was used to improve the discernibility of data.; Results: The results revealed that the random forest (RF) model can precisely locate bruised regions, while the gradient boosting decision tree (GBDT) model can validly classify apple bruising times with 70.59% accuracy. Data of 128 wavebands were compressed to 13 wavebands, providing a high accuracy of 92.86%.; Conclusion: The results prove that the hyperspectral technique can be used for predicting apple bruising time, which will help to assess the internal quality and safety of apples. © 2018 Society of Chemical Industry.; © 2018 Society of Chemical Industry.

Journal ArticleDOI
TL;DR: These results demonstrate that VNIR hyperspectral imaging system is an effective tool for rapidly quantifying and visualizing the adulterated levels of rice.
Abstract: Background Rice adulteration in the food industry that infringes on the interests of consumers is considered very serious. To realize the rapid and precise quantitation of adulterated rice, a visible near infrared (VNIR) hyperspectral imaging system (380-1000 nm) was developed in the present study. A Savitsky-Golay first derivative (SG1) transform was utilized to eliminate the constant spectral baseline offset. Then, the adulterated levels of rice samples were quantified by partial least squares regression (PLSR). Results A SG1-PLSR model based on full-wavelength was attained with a coefficient of determination of prediction set (RP ) of 0.9909, root-mean-square error of prediction set (RMSEP ) of 0.0447 g kg-1 and residual predictive deviation (RPDP ) of 11.28. Furthermore, fifteen important wavelengths were selected based on the weighted regression coefficients (BW ) and a simplified model (PLSR-15) was established with RP of 0.9769, RMSEP of 0.0708 g kg-1 and RPDP of 3.49. Finally, two visualization maps produced by applying the optimal models (SG1-PLSR and PLSR-15) were used to visualize the adulterated levels of rice. Conclusion These results demonstrate that VNIR hyperspectral imaging system is an effective tool for rapidly quantifying and visualizing the adulterated levels of rice. © 2019 Society of Chemical Industry.

Journal ArticleDOI
TL;DR: In this article, Shi et al. proposed a divergence-imPLICation approach for MARS and EUROPA in the context of the Shandong Provincial Key Laboratory of Optical Astronomy & Solar-Terrestrial Environment.
Abstract: DEGREES -IMPLICATION FOR MARS AND EUROPA. Erbin Shi, Zongcheng Ling, Alian Wang, Institute of Space Sciences and Shandong Provincial Key Laboratory of Optical Astronomy & Solar-Terrestrial Environment, Shandong University, Weihai, 264209, China; Department of Earth & Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, MO, 63130 (irvingshi@epsc.wustl.edu).

Journal ArticleDOI
13 Dec 2019-Sensors
TL;DR: The development of a novel modular two-channel multispectral imaging system with a broad spectral sensitivity from the visible to the short-wave infrared spectrum that is compact, lightweight and energy-efficient enough for UAV-based remote sensing applications.
Abstract: Short-wave infrared (SWIR) imaging systems with unmanned aerial vehicles (UAVs) are rarely used for remote sensing applications, like for vegetation monitoring. The reasons are that in the past, sensor systems covering the SWIR range were too expensive, too heavy, or not performing well enough, as, in contrast, it is the case in the visible and near-infrared range (VNIR). Therefore, our main objective is the development of a novel modular two-channel multispectral imaging system with a broad spectral sensitivity from the visible to the short-wave infrared spectrum (approx. 400 nm to 1700 nm) that is compact, lightweight and energy-efficient enough for UAV-based remote sensing applications. Various established vegetation indices (VIs) for mapping vegetation traits can then be set up by selecting any suitable filter combination. The study describes the selection of the individual components, starting with suitable camera modules, the optical as well as the control and storage parts. Special bandpass filters are used to select the desired wavelengths to be captured. A unique flange system has been developed, which also allows the filters to be interchanged quickly in order to adapt the system to a new application in a short time. The characterization of the system was performed in the laboratory with an integrating sphere and a climatic chamber. Finally, the integration of the novel modular VNIR/SWIR imaging system into a UAV and a subsequent first outdoor test flight, in which the functionality was tested, are described.

Journal ArticleDOI
TL;DR: Very good consistency was achieved in the resulted images, which confirms that the proposed approach could be served as an alternative for cloud removal in the VNIR bands using multi-temporal images with good maintenance of DN (digital number) value consistency.
Abstract: Cloud-free remote sensing images are required for many applications, such as land cover classification, land surface temperature retrieval and agricultural-drought monitoring. Cloud cover in remote sensing images can be pervasive, dynamic and often unavoidable. Current techniques of cloud removal for the VNIR (visible and near-infrared) bands still encounters the problem of pixel values estimated for the cloudy area incomparable and inconsistent with the cloud-free region in the target image. In this paper, we proposed an efficient approach to remove thick clouds and their shadows in VNIR bands using multi-temporal images with good maintenance of DN (digital number) value consistency. We constructed the spectral similarity between the target image and reference one for DN value estimation of the cloudy pixels. The information reconstruction was done with 10 neighboring cloud-free pair-pixels with the highest similarity over a small window centering the cloudy pixel between target and reference images. Four Landsat5 TM images around Nanjing city of Jiangsu Province in Eastern China were used to validate the approach over four representative surface patterns (mountain, plain, water and city) for diverse sizes of cloud cover. Comparison with the conventional approaches indicates high accuracy of the approach in cloud removal for the VNIR bands. The approach was applied to the Landsat8 OLI (Operational Land Imager) image on 29 April 2016 in Nanjing area using two reference images. Very good consistency was achieved in the resulted images, which confirms that the proposed approach could be served as an alternative for cloud removal in the VNIR bands using multi-temporal images.

Journal ArticleDOI
27 Feb 2019-Sensors
TL;DR: The potential for in-situ estimation of profile soil properties using a multi-sensor approach is demonstrated, and suggestions regarding the best combination of sensors, preprocessing, and modeling techniques are provided.
Abstract: Optical diffuse reflectance spectroscopy (DRS) has been used for estimating soil physical and chemical properties in the laboratory. In-situ DRS measurements offer the potential for rapid, reliable, non-destructive, and low cost measurement of soil properties in the field. In this study, conducted on two central Missouri fields in 2016, a commercial soil profile instrument, the Veris P4000, acquired visible and near-infrared (VNIR) spectra (343–2222 nm), apparent electrical conductivity (ECa), cone index (CI) penetrometer readings, and depth data, simultaneously to a 1 m depth using a vertical probe. Simultaneously, soil core samples were obtained and soil properties were measured in the laboratory. Soil properties were estimated using VNIR spectra alone and in combination with depth, ECa, and CI (DECS). Estimated soil properties included soil organic carbon (SOC), total nitrogen (TN), moisture, soil texture (clay, silt, and sand), cation exchange capacity (CEC), calcium (Ca), magnesium (Mg), potassium (K), and pH. Multiple preprocessing techniques and calibration methods were applied to the spectral data and evaluated. Calibration methods included partial least squares regression (PLSR), neural networks, regression trees, and random forests. For most soil properties, the best model performance was obtained with the combination of preprocessing with a Gaussian smoothing filter and analysis by PLSR. In addition, DECS improved estimation of silt, sand, CEC, Ca, and Mg over VNIR spectra alone; however, the improvement was more than 5% only for Ca. Finally, differences in estimation accuracy were observed between the two fields despite them having similar soils, with one field demonstrating better results for all soil properties except silt. Overall, this study demonstrates the potential for in-situ estimation of profile soil properties using a multi-sensor approach, and provides suggestions regarding the best combination of sensors, preprocessing, and modeling techniques for in-situ estimation of profile soil properties.

Journal ArticleDOI
TL;DR: An urban spectral library consisting of collected in situ material spectra with imaging spectroscopy techniques in the visible and near-infrared (VNIR) and short-wave infrared (SWIR) spectral range is presented, with particular focus on facade materials and material variation.
Abstract: Knowledge about the existing materials in urban areas has, in recent times, increased in importance. With the use of imaging spectroscopy and hyperspectral remote sensing techniques, it is possible to measure and collect the spectra of urban materials. Most spectral libraries consist of either spectra acquired indoors in a controlled lab environment or of spectra from afar using airborne systems accompanied with in situ measurements. Furthermore, most publicly available spectral libraries have, so far, not focused on facade materials but on roofing materials, roads, and pavements. In this study, we present an urban spectral library consisting of collected in situ material spectra with imaging spectroscopy techniques in the visible and near-infrared (VNIR) and short-wave infrared (SWIR) spectral range, with particular focus on facade materials and material variation. The spectral library consists of building materials, such as facade and roofing materials, in addition to surrounding ground material, but with a focus on facades. This novelty is beneficial to the community as there is a shift to oblique-viewed Unmanned Aerial Vehicle (UAV)-based remote sensing and thus, there is a need for new types of spectral libraries. The post-processing consists partly of an intra-set solar irradiance correction and recalculation of reference spectra caused by signal clipping. Furthermore, the clustering of the acquired spectra was performed and evaluated using spectral measures, including Spectral Angle and a modified Spectral Gradient Angle. To confirm and compare the material classes, we used samples from publicly available spectral libraries. The final material classification scheme is based on a hierarchy with subclasses, which enables a spectral library with a larger material variation and offers the possibility to perform a more refined material analysis. The analysis reveals that the color and the surface structure, texture or coating of a material plays a significantly larger role than what has been presented so far. The samples and their corresponding detailed metadata can be found in the Karlsruhe Library of Urban Materials (KLUM) archive.

Journal ArticleDOI
TL;DR: The optimal UAS sensor capable of mapping a relatively large moss bed with the prediction accuracy similar to the hyperspectral system is identified, which has the potential to be adopted for other similar vegetation biophysical/chemical plant traits.
Abstract: Antarctic moss communities, found in the spatially fragmented and fragile moss beds, can serve as indicators of the regional impacts of climate change. Unmanned aerial systems (UAS) carrying visible and near infrared (VNIR) sensors are a suitable nonintrusive mapping platform. UAS deployments in Antarctica are, due to weather and logistical restrictions, infrequent and short, thus it is essential that field time is optimized. This article identified the optimal spectral and spatial resolution of the UAS-based sensors to facilitate efficient data acquisition without jeopardizing the accuracy of remotely sensed moss health indicators. A hyperspectral line scanner was used to collect imagery of two moss study sites near the Casey Australian Antarctic base. The spectral and spatial data degradation simulated two lightweight sensors that could be used for more efficient spectral image acquisition in the future. These simulations revealed that the spectral quality deteriorated more definitively at the spatial resolution where moss spectra started to mix with spectra of surrounding rocks. Subsequently, random forest models (RFMs) were trained with lab measurements for predicting chlorophyll content and effective leaf density. The RFMs were applied to the UAS imagery of the reduced spectral and spatial resolutions to quantify decline in accuracy of both indicators. We identified the optimal UAS sensor capable of mapping a relatively large moss bed (∼5 ha) with the prediction accuracy similar to the hyperspectral system. This sensor would be a frame camera acquiring 25 VNIR spectral bands at a spatial resolution of 8 cm. This developed methodology has the potential to be adopted for other similar vegetation biophysical/chemical plant traits.

Journal ArticleDOI
TL;DR: The wheat identification system developed here serves as an effective identification framework and supports the view that deep learning tools can adequately discriminate between different types of wheat kernels.
Abstract: Background The sustainable management of agricultural resources requires the integration of cutting-edge science with the observation and identification of crops. This assists experts to make correct decisions. The aim of this study is to assess the robustness of a commonly used deep learning tool, VGG16, in improving the categorization of wheat kernels. Two fusion methodologies were considered simultaneously. We performed experiments on visible light (RGB), short wave infrared (SWIR), and visible-near infrared (VNIR) datasets, including 40 classes, with 200 samples in each class, giving 8000 samples in total. Results After making simulations with 6400 training and 1600 testing samples, we achieved excellent performance scores, with 98.19% and 100% accuracy rates, respectively. Conclusion The wheat identification system developed here serves as an effective identification framework and supports the view that deep learning tools can adequately discriminate between different types of wheat kernels. The proposed automated system would be useful for improving economic growth and in reducing the labor force, leading to greater efficiency and higher productivity in the wheat industry. © 2019 Society of Chemical Industry.

Journal ArticleDOI
28 Mar 2019-Sensors
TL;DR: A calibration procedure was applied to estimate soil moisture based on the integration of in situ and airborne thermal remote sensing data and results show a good correlation between the estimated ATI and the SM of the soil samples measured in the laboratory.
Abstract: Soil moisture (SM) plays a fundamental role in the terrestrial water cycle and in agriculture, with key applications such as the monitoring of crop growing and hydrogeological management. In this study, a calibration procedure was applied to estimate SM based on the integration of in situ and airborne thermal remote sensing data. To this aim, on April 2018, two airborne campaigns were carried out with the TASI-600 multispectral thermal sensor on the Petacciato (Molise, Italy) area. Simultaneously, soil samples were collected in different agricultural fields of the study area to determine their moisture content and the granulometric composition. A WorldView 2 high-resolution visible-near infrared (VNIR) multispectral satellite image was acquired to calculate the albedo of the study area to be used together with the TASI images for the estimation of the apparent thermal inertia (ATI). Results show a good correlation (R² = 0.62) between the estimated ATI and the SM of the soil samples measured in the laboratory. The proposed methodology has allowed us to obtain a SM map for bare and scarcely vegetated soils in a wide agricultural area in Italy which concerns cyclical hydrogeological instability phenomena.

Journal ArticleDOI
TL;DR: A more suitable airborne hyperspectral imaging and an empirical line atmospheric correction procedure is proposed by taking into account: 1) imaging sensor exposure setting, 2) spectral extrapolation, 3) sensor saturation of targets’ signal, and 4) optimal materials and grey levels for field reference reflectance for the empirical line method.

Journal ArticleDOI
TL;DR: The enhanced interpretation capabilities of the fuzzy approach can assist in the extraction of fruitful knowledge governing the association between soil properties and VNIR/SWIR spectra, as compared with other contemporary approaches, namely PLS, SVM, and Cubist.

Journal ArticleDOI
TL;DR: The potential of Visible Near-Infrared and Short-Wave Infrared (VNIR-SWIR, 400nm-2500nm) hyperspectral imagery for use in multivariate approaches and geostatistical techniques for mapping topsoil is discussed in this article.
Abstract: The potential of Visible Near-Infrared and Short-Wave Infrared (VNIR–SWIR, 400 nm–2500 nm) hyperspectral imagery for use in multivariate approaches and geostatistical techniques for mapping topsoil...

Journal ArticleDOI
TL;DR: Directly estimating SMC from L8 imagery provides more information for irrigation management and better drought mitigation than by using the remotely sensed drought index, and co-confirms the bad effect of drought on almost all areas of the northern part of the Central Highlands of Vietnam.
Abstract: Effective mapping and monitoring of soil moisture content (SMC) in space and time is an expected application of remote sensing for agricultural development and drought mitigation, particularly in the context of global climate change impact, given that agricultural drought is occurring more frequently and severely worldwide. This study aims to develop a regional algorithm for estimating SMC by using Landsat 8 (L8) imagery, based on analyses of the response of soil reflectance, by corresponding L8 bands with the change of SMC from dry to saturated states, in all 103 soil samples taken in the central region of Vietnam. The L8 spectral band ratio of the near-infrared band (NIR: 850–880 nm, band 5) versus the short-wave infrared 2 band (SWIR2: 2110 to 2290 nm, band 7) shows the strongest correlation to SMC by a logarithm function (R2 = 0.73 and the root mean square error, RMSE ~ 12%) demonstrating the high applicability of this band ratio for estimating SMC. The resultant maps of SMC estimated from the L8 images were acquired over the northern part of the Central Highlands of Vietnam in March 2015 and March 2016 showed an agreement with the pattern of severe droughts that occurred in the region. Further discussions on the relationship between the estimated SMC and the satellite-based retrieved drought index, the Normal Different Drought Index, from the L8 image acquired in March 2016, showed a strong correlation between these two variables within an area with less than 20% dense vegetation (R2 = 0.78 to 0.95), and co-confirms the bad effect of drought on almost all areas of the northern part of the Central Highlands of Vietnam. Directly estimating SMC from L8 imagery provides more information for irrigation management and better drought mitigation than by using the remotely sensed drought index. Further investigations on various soil types and optical sensors (i.e., Sentinel 2A, 2B) need to be carried out, to extend and promote the applicability of the prosed algorithm, towards better serving agricultural management and drought mitigation.