scispace - formally typeset
Search or ask a question

Showing papers on "Vorinostat published in 2013"


Journal ArticleDOI
TL;DR: Together, the results show how HDAC inhibition can epigenetically restore BIM function and death sensitivity of EGFR-TKI in cases of EGfr-mutant NSCLC where resistance to EGF receptor tyrosine kinase inhibitors is associated with a common BIM polymorphism.
Abstract: BIM (BCL2L11) is a BH3-only proapoptotic member of the Bcl-2 protein family. BIM upregulation is required for apoptosis induction by EGF receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKI) in EGFR-mutant forms of non-small cell lung cancer (NSCLC). Notably, a BIM deletion polymorphism occurs naturally in 12.9% of East Asian individuals, impairing the generation of the proapoptotic isoform required for the EGFR-TKIs gefitinib and erlotinib and therefore conferring an inherent drug-resistant phenotype. Indeed, patients with NSCLC, who harbored this host BIM polymorphism, exhibited significantly inferior responses to EGFR-TKI treatment than individuals lacking this polymorphism. In an attempt to correct this response defect in the resistant group, we investigated whether the histone deacetylase (HDAC) inhibitor vorinostat could circumvent EGFR-TKI resistance in EGFR-mutant NSCLC cell lines that also harbored the BIM polymorphism. Consistent with our clinical observations, we found that such cells were much less sensitive to gefitinib-induced apoptosis than EGFR-mutant cells, which did not harbor the polymorphism. Notably, vorinostat increased expression in a dose-dependent manner of the proapoptotic BH3 domain-containing isoform of BIM, which was sufficient to restore gefitinib death sensitivity in the EGFR mutant, EGFR-TKI-resistant cells. In xenograft models, while gefitinib induced marked regression via apoptosis of tumors without the BIM polymorphism, its combination with vorinostat was needed to induce marked regression of tumors with the BIM polymorphism in the same manner. Together, our results show how HDAC inhibition can epigenetically restore BIM function and death sensitivity of EGFR-TKI in cases of EGFR-mutant NSCLC where resistance to EGFR-TKI is associated with a common BIM polymorphism.

695 citations


Journal ArticleDOI
TL;DR: Evaluating HDAC inhibitor properties using histone acetylation is not predictive of their function on cellular activity, and a panel of benzamide-containingHDACi are slow tight-binding inhibitors with long residence times unlike the hydroxamate-containing HDACi vorinostat and trichostatin-A.

298 citations


Journal ArticleDOI
TL;DR: The pharmacology and mechanisms of action of HDAC inhibitors are outlined while discussing the safety and efficacy of these compounds in clinical studies to date, and the use ofHDAC inhibitors as multitargeted therapies for malignancy is discussed.
Abstract: Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while discussing the safety and efficacy of these compounds in clinical studies to date.

267 citations


Journal ArticleDOI
TL;DR: Panobinostat was significantly more potent than all other HDAC inhibitors and induced virus production even in the very low concentration range 8–31 nM and is now being advanced into clinical testing against latent HIV infection.
Abstract: Objective: We aimed to compare the potential for inducing HIV production and the effect on T-cell activation of potent HDAC inhibitors undergoing clinical investigation.Design: In vitro studyMethods: The latently infected cell lines ACH2 and U1 were treated with the HDAC inhibitors panobinostat, givinostat, belinostat, vorinostat and valproic acid. Viral induction was estimated by p24 production. Peripheral blood mononuclear cells from uninfected donors were treated with the HDAC inhibitors and the expression of activation markers on T-cell phenotypes was measured using flow cytometry. Finally, the ability of givinostat, belinostat and panobinostat to reactivate latent HIV-1 expression in primary T-cells was investigated employing a CCL19-induced latent primary CD4+ T cell infection model.Results: The various HDAC inhibitors displayed significant potency differences in stimulating HIV-1 expression from the latently infected cell lines with panobinostat > givinostat ≈belinostat > vorinostat > valproic acid...

191 citations


Journal ArticleDOI
TL;DR: Compound 19i (LMK235) (N-((6-(hydroxyamino)-6-oxohexyl)oxy)-3,5-dimethylbenzamide) showed similar effects compared to vorinostat on inhibition of cellular HDACs in a pan-HDAC assay but enhanced cytotoxic effects against the human cancer cell lines A2780, Cal27, Kyse510, and MDA-MB231.
Abstract: The synthesis and biological evaluation of new potent hydroxamate-based HDAC inhibitors with a novel alkoxyamide connecting unit linker region are described. Biological evaluation includes MTT and cellular HDAC assays on sensitive and chemoresistant cancer cell lines as well as HDAC profiling of selected compounds. Compound 19i (LMK235) (N-((6-(hydroxyamino)-6-oxohexyl)oxy)-3,5-dimethylbenzamide) showed similar effects compared to vorinostat on inhibition of cellular HDACs in a pan-HDAC assay but enhanced cytotoxic effects against the human cancer cell lines A2780, Cal27, Kyse510, and MDA-MB231. Subsequent HDAC profiling yielded a novel HDAC isoform selectivity profile of 19i in comparison to vorinostat or trichostatin A (TSA). 19i shows nanomolar inhibition of HDAC4 and HDAC5, whereas vorinostat and TSA inhibit HDAC4 and HDAC5 in the higher micromolar range.

152 citations


Journal ArticleDOI
TL;DR: New insight is provided into the transcriptional effects of HDACi in human donor-matched normal and transformed cells, and implicates specific molecules and pathways in the tumor-selective cytotoxic activity of these compounds.
Abstract: The identification of recurrent somatic mutations in genes encoding epigenetic enzymes has provided a strong rationale for the development of compounds that target the epigenome for the treatment of cancer. This notion is supported by biochemical studies demonstrating aberrant recruitment of epigenetic enzymes such as histone deacetylases (HDACs) and histone methyltransferases to promoter regions through association with oncogenic fusion proteins such as PML-RARα and AML1-ETO. HDAC inhibitors (HDACi) are potent inducers of tumor cell apoptosis; however, it remains unclear why tumor cells are more sensitive to HDACi-induced cell death than normal cells. Herein, we assessed the biological and molecular responses of isogenic normal and transformed cells to the FDA-approved HDACi vorinostat and romidepsin. Both HDACi selectively killed cells of diverse tissue origin that had been transformed through the serial introduction of different oncogenes. Time-course microarray expression profiling revealed that normal and transformed cells transcriptionally responded to vorinostat treatment. Over 4200 genes responded differently to vorinostat in normal and transformed cells and gene ontology and pathway analyses identified a tumor-cell-selective pro-apoptotic gene-expression signature that consisted of BCL2 family genes. In particular, HDACi induced tumor-cell-selective upregulation of the pro-apoptotic gene BMF and downregulation of the pro-survival gene BCL2A1 encoding BFL-1. Maintenance of BFL-1 levels in transformed cells through forced expression conferred vorinostat resistance, indicating that specific and selective engagement of the intrinsic apoptotic pathway underlies the tumor-cell-selective apoptotic activities of these agents. The ability of HDACi to affect the growth and survival of tumor cells whilst leaving normal cells relatively unharmed is fundamental to their successful clinical application. This study provides new insight into the transcriptional effects of HDACi in human donor-matched normal and transformed cells, and implicates specific molecules and pathways in the tumor-selective cytotoxic activity of these compounds.

152 citations


Journal ArticleDOI
31 Jan 2013-Oncogene
TL;DR: It is found that histone deacetylase (HDAC) inhibitors suppress both wild-type and mutant p53 transcription in time- and dose-dependent manners and is suggested that HDAC inhibitors and especially HDAC8-targeting agents might be explored as an adjuvant for tumors carrying a Mutant p53.
Abstract: Mutation of the p53 gene is the most common genetic alteration in human cancer and contributes to malignant process by enhancing transformed properties of cells and resistance to anticancer therapy. Mutant p53 is often highly expressed in tumor cells at least, in part, due to its increased half-life. However, whether mutant p53 expression is regulated by other mechanisms in tumors is unclear. Here we found that histone deacetylase (HDAC) inhibitors suppress both wild-type and mutant p53 transcription in time- and dose-dependent manners. Consistent with this, the levels of wild-type and mutant p53 proteins are decreased upon treatment with HDAC inhibitors. Importantly, we found that upon knockdown of each class I HDAC, only HDAC8 knockdown leads to decreased expression of wild-type and mutant p53 proteins and transcripts. Conversely, we found that ectopic expression of wild-type, but not mutant HDAC8, leads to increased transcription of p53. Furthermore, we found that knockdown of HDAC8 results in reduced expression of HoxA5 and consequently, attenuated ability of HoxA5 to activate p53 transcription, which can be rescued by ectopic expression of HoxA5. Because of the fact that HDAC8 is required for expression of both wild-type and mutant p53, we found that targeted disruption of HDAC8 expression remarkably triggers proliferative defect in cells with a mutant, but not wild-type, p53. Together, our data uncover a regulatory mechanism of mutant p53 transcription via HDAC8 and suggest that HDAC inhibitors and especially HDAC8-targeting agents might be explored as an adjuvant for tumors carrying a mutant p53.

142 citations


Journal ArticleDOI
TL;DR: The data suggest HDACi are immunostimulatory during cancer treatment and that combinatorial therapeutic regimes with immunotherapies should be considered in the clinic.
Abstract: Cell-intrinsic effects such as induction of apoptosis and/or inhibition of cell proliferation have been proposed as the major antitumor responses to histone deacetylase inhibitors (HDACi). These compounds can also mediate immune-modulatory effects that may contribute to their anticancer effects. However, HDACi can also induce anti-inflammatory, and potentially immunosuppressive, outcomes. We therefore sought to clarify the role of the immune system in mediating the efficacy of HDACi in a physiologic setting, using preclinical, syngeneic murine models of hematologic malignancies and solid tumors. We showed an intact immune system was required for the robust anticancer effects of the HDACi vorinostat and panobinostat against a colon adenocarcinoma and two aggressive models of leukemia/lymphoma. Importantly, although HDACi-treated immunocompromised mice bearing established lymphoma succumbed to disease significantly earlier than tumor bearing, HDACi-treated wild-type (WT) mice, treatment with the conventional chemotherapeutic etoposide equivalently enhanced the survival of both strains. IFN-γ and tumor cell signaling through IFN-γR were particularly important for the anticancer effects of HDACi, and vorinostat and IFN-γ acted in concert to enhance the immunogenicity of tumor cells. Furthermore, we show that a combination of vorinostat with α-galactosylceramide (α-GalCer), an IFN-γ-inducing agent, was significantly more potent against established lymphoma than vorinostat treatment alone. Intriguingly, B cells, but not natural killer cells or CD8(+) T cells, were implicated as effectors of the vorinostat antitumor immune response. Together, our data suggest HDACi are immunostimulatory during cancer treatment and that combinatorial therapeutic regimes with immunotherapies should be considered in the clinic.

104 citations


Journal ArticleDOI
TL;DR: This is the first study to identify competing roles for miR‐17‐92 cluster members, in the context of HDI‐induced changes in CRC cells, and identify NEDD9 and CDK19 were identified as novelmiR‐18a targets and were shown to be pro‐proliferative genes, with RNA interference of their transcripts decreasing proliferation in CRC Cells.
Abstract: Diet-derived butyrate, a histone deacetylase inhibitor (HDI), decreases proliferation and increases apoptosis in colorectal cancer (CRC) cells via epigenetic changes in gene expression. Other HDIs such as suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) have similar effects. This study examined the role of microRNAs (miRNAs) in mediating the chemo-protective effects of HDIs, and explored functions of the oncogenic miR-17-92 cluster. The dysregulated miRNA expression observed in HT29 and HCT116 CRC cells could be epigenetically altered by butyrate, SAHA and TSA. These HDIs decreased expression of miR-17-92 cluster miRNAs (P < 0.05), with a corresponding increase in miR-17-92 target genes, including PTEN, BCL2L11, and CDKN1A (P < 0.05). The decrease in miR-17-92 expression may be partly responsible for the anti-proliferative effects of HDIs, with introduction of miR-17-92 cluster miRNA mimics reversing this effect and decreasing levels of PTEN, BCL2L11, and CDKN1A (P < 0.05). The growth effects of HDIs may be mediated by changes in miRNA activity, with down-regulation of the miR-17-92 cluster a plausible mechanism to explain some of the chemo-protective effects of HDIs. Of the miR-17-92 cluster miRNAs, miR-19a and miR-19b were primarily responsible for promoting proliferation, while miR-18a acted in opposition to other cluster members to decrease growth. NEDD9 and CDK19 were identified as novel miR-18a targets and were shown to be pro-proliferative genes, with RNA interference of their transcripts decreasing proliferation in CRC cells. This is the first study to identify competing roles for miR-17-92 cluster members, in the context of HDI-induced changes in CRC cells.

103 citations


Journal ArticleDOI
03 Oct 2013-Blood
TL;DR: It is demonstrated that autophagy is induced by AML1-ETO-targeting drugs, such as the histone deacetylase inhibitors (HDACis) valproic acid (VPA) and vorinostat, and induced in t(8;21) AML patient cells, and combined treatment with CQ enhanced cell death.

100 citations


Journal ArticleDOI
TL;DR: In this paper, small interfering RNA (siRNA)-mediated depletion of HDAC5 expression induced the most significant accumulation of H3K4me2, a specific substrate of LSD1 combined treatment with pargyline, and HDAC inhibitor, SAHA (Vorinostat), led to superior growth inhibition and apoptotic death in TNBC cells, but exhibited additive or antagonistic effect on growth inhibition in non-TNBC counterparts or non-tumorigenic breast cells.
Abstract: Our previous studies demonstrated that lysine-specific demethylase 1 (LSD1) and histone deacetylases (HDACs) closely interact in controlling growth of breast cancer cells However, the underlying mechanisms are largely unknown In this study, we showed that knockdown of LSD1 expression (LSD1-KD) by RNAi decreased mRNA levels of HDAC isozymes in triple-negative breast cancer (TNBC) cells Small interfering RNA (siRNA)-mediated depletion of HDAC5 expression induced the most significant accumulation of H3K4me2, a specific substrate of LSD1 Combined treatment with LSD1 inhibitor, pargyline, and HDAC inhibitor, SAHA (Vorinostat), led to superior growth inhibition and apoptotic death in TNBC cells, but exhibited additive or antagonistic effect on growth inhibition in non-TNBC counterparts or non-tumorigenic breast cells Additionally, LSD1-KD enhanced SAHA-induced reexpression of a subset of aberrantly silenced genes, such as NR4A1, PCDH1, RGS16, BIK, and E-cadherin whose reexpression may be tumor suppressive Genome-wide microarray study in MDA-MB-231 cells identified a group of tumor suppressor genes whose expression was induced by SAHA and significantly enhanced by LSD1-KD We also showed that concurrent depletion of RGS16 by siRNA reduced overall cytotoxicity of SAHA and blocked the reexpression of E-cadherin, CDKN1C and ING1 in LSD1-deficient MDA-MB-231 cells Furthermore, cotreatment with RGS16 siRNA reversed the downregulation of nuclear factor-kappaB expression induced by combined inhibition of LSD1 and HDACs, suggesting a crucial role of RGS16 in controlling key pathways of cell death in response to combination therapy Taken together, these results provide novel mechanistic insight into the breast cancer subtype-dependent role of LSD1 in mediating HDAC activity and therapeutic efficacy of HDAC inhibitor

Journal ArticleDOI
TL;DR: It is indicated that epigenetic mechanisms play a crucial role in opioid-induced long-lasting neuroplasticity and new strategies to limit opioid abuse potential and increase the value of these drugs as analgesics are suggested.

Journal ArticleDOI
TL;DR: It is demonstrated that HDAC inhibitor treatment in OA-FLS significantly increased miR-146a expression and mediated markedly negative regulation to inhibit IL-1β-induced signaling and cytokine secretion, indicating the potential rationale of anti-inflammatory effects for HDAC inhibitors.

Journal ArticleDOI
TL;DR: Investigating the effects of vorinostat on human CD14(+) monocyte-derived dendritic cells (DCs) and mouse immature DC in vitro and its effects on animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) in vivo suggest therapeutic effects ofvorinOSTat on EAE which may by suppress DCs and DCs-mediated Th1 and Th17 cell functions.

Journal ArticleDOI
07 Mar 2013-Oncogene
TL;DR: It is demonstrated that glucocorticoid dexamethasone and HDAC inhibitors cooperate to suppress the invasiveness of breast cancer cells through novel, complementary mechanisms that converge on E-cadherin.
Abstract: Aggressive cancers often express E-cadherin in cytoplasmic vesicles rather than on the plasma membrane and this may contribute to the invasive phenotype of these tumors. Therapeutic strategies are not currently available that restore the anti-invasive function of E-cadherin in cancers. MDA-MB-231 cells are a frequently used model of invasive triple-negative breast cancer, and these cells express low levels of E-cadherin that is mislocalized to cytoplasmic vesicles. MDA-MB-231 cell lines stably expressing wild-type E-cadherin or E-cadherin fused to glutathione S-transferase or green fluorescent protein were used as experimental systems to probe the mechanisms responsible for cytoplasmic E-cadherin localization in invasive cancers. Although E-cadherin expression partly reduced cell invasion in vitro, E-cadherin was largely localized to the cytoplasm and did not block the invasiveness of the corresponding orthotopic xenograft tumors. Further studies indicated that the glucocorticoid dexamethasone and the highly potent class I histone deacetylase (HDAC) inhibitor largazole cooperated to induce E-cadherin localization to the plasma membrane in triple-negative breast cancers, and to suppress cellular invasion in vitro. Dexamethasone blocked the production of the cleaved form of the CDCP1 (that is, CUB domain-containing protein 1) protein (cCDCP1) previously implicated in the pro-invasive activities of CDCP1 by upregulating the serine protease inhibitor plasminogen activator inhibitor-1. E-cadherin preferentially associated with cCDCP1 compared with the full-length form. In contrast, largazole did not influence CDCP1 cleavage, but increased the association of E-cadherin with γ-catenin. This effect on E-cadherin/γ-catenin complexes was shared with the nonisoform selective HDAC inhibitors trichostatin A (TSA) and vorinostat (suberoylanilide hydroxamic acid, SAHA), although largazole upregulated endogenous E-cadherin levels more strongly than TSA. These results demonstrate that glucocorticoids and HDAC inhibitors, both of which are currently in clinical use, cooperate to suppress the invasiveness of breast cancer cells through novel, complementary mechanisms that converge on E-cadherin.

Journal ArticleDOI
TL;DR: Epigenetic profiling is a powerful means to gain mechanistic insights into bone anabolic processes and may hold clues for the development of new anabolic treatments for osteoporosis and other conditions of low bone mass.

Journal ArticleDOI
TL;DR: It is shown that the sequential treatment of resistant cells, first with an epigenetic drug (DAC), and then with doxorubicin, induces a highly synergistic effect, thus reducing the IC(50) of doxorbicin by several thousand fold.
Abstract: Epigenetic alterations such as aberrant DNA methylation and histone modifications contribute substantially to both the cause and maintenance of drug resistance. These epigenetic changes lead to silencing of tumor suppressor genes involved in key DNA damage-response pathways, making drug-resistant cancer cells nonresponsive to conventional anticancer drug therapies. Our hypothesis is that treating drug-resistant cells with epigenetic drugs could restore the sensitivity to anticancer drugs by reactivating previously silenced genes. To test our hypothesis, we used drug-resistant breast cancer cells (MCF-7/ADR) and two epigenetic drugs that act via different mechanisms--5-aza-2'-deoxycytidine (decitabine, DAC), a demethylating agent, and suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor--in combination with doxorubicin. We show that the sequential treatment of resistant cells, first with an epigenetic drug (DAC), and then with doxorubicin, induces a highly synergistic effect, thus reducing the IC(50) of doxorubicin by several thousand fold. The sequential treatment caused over 90% resistant cells to undergo G2/M cell cycle arrest, determined to be due to upregulation of p21(WAF1/CIP1) expression, which is responsible for cell-cycle regulation. The induction of p21(WAF1/CIP1) correlated well with the depletion of DNA methyltransferase1 (DNMT1), an enzyme that promotes methylation of DNA, suggesting that the p21(WAF1/CIP1) gene may have been methylated and hence is inactive in MCF-7/ADR cells. Microarray analysis shows expression of several tumor suppressor genes and downregulation of tumor promoter genes, particularly in sequentially treated resistant cells. Sequential treatment was found to be significantly more effective than simultaneous treatment, and DAC was more effective than SAHA in overcoming doxorubicin resistance. Synergistic effect with sequential treatment was also seen in drug-sensitive breast cancer cells, but the effect was significantly more pronounced in resistant cells. In conclusion, the sequential treatment of an epigenetic drug in combination with doxorubicin induces a highly synergistic effect that overcomes doxorubicin resistance in breast cancer cells.

Journal ArticleDOI
TL;DR: It is suggested that vorinostat may be a promising therapeutic agent for the prevention and treatment of OA by suppressing the degradation of I-κBα and attenuating NF-κBs p65 translocation to the nucleus.

Journal ArticleDOI
TL;DR: The treatment effect of the pan-HDAC inhibitor vorinostat was variable in UCCs and up-regulation of HDAC2 and HDAC8 was not predictive for treatment response, and common findings in urothelial cancer are common findings.
Abstract: Objective To determine histone deacetylase (HDAC) isoenzyme expression patterns in urothelial cancer tissues and cell lines and investigate their potential to predict the efficacy of the HDAC inhibitor vorinostat. Materials and methods Expression of HDAC mRNAs was determined by quantitative RT-PCR in 18 urothelial cancer cell lines (UCC), normal uroepithelial controls (NUC), 24 urothelial cancer tissues, and 12 benign controls. Results were compared with published microarray data. Effects of pan-HDAC inhibitor vorinostat and on UCCs were determined by viability and apoptosis assays, cell cycle analysis, and measurements of p21CIP1, thymidylate synthase (TS), and EZH2. In addition, protein expression levels of HDACs were investigated in UCCs. Results Prominent changes in UCCs were HDAC2 and/or HDAC8 up-regulation in 11 of 18 cell lines and decreased expression of HDAC4, HDAC5, and/or HDAC7 mRNA in 15 of 18 cell lines. In cancer tissues, HDAC8 was likewise significantly up-regulated (P = 0.002), whereas HDAC2 up-regulation was detected only in a subset of tumors (9/24, P = 0.085). Overexpression of HDAC2 and HDAC8 mRNA did not correspond with the protein level. Vorinostat induced G2/M arrest, an increase in the sub-G1 fraction, up-regulation of p21, and down-regulation of TS in all UCC. Effects on EZH2 and PARP cleavage as well as activation of caspase 3/7 differed between cell lines. Associations between the overall sensitivity to the pan-HDACi vorinostat and overexpression of HDAC2 and HDAC8 mRNA were not observed. Conclusions In urothelial cancer, up-regulation of HDAC2 and HDAC8 and down-regulation of HDAC4, HDAC5, and HDAC7 mRNA are common findings. The treatment effect of the pan-HDAC inhibitor vorinostat was variable in UCCs and up-regulation of HDAC2 and HDAC8 was not predictive for treatment response. Whether selective targeting of HDAC2, HDAC8, or other HDACs deregulated in urothelial cancer (e.g., HDAC4, HDAC5, and HDAC7) result in a more consistent treatment response needs further investigation.

Journal ArticleDOI
10 Oct 2013-PLOS ONE
TL;DR: It is found that IR combined with SAHA showed increased therapeutic efficacy when compared with either treatment alone in MCF-7, MDA-MB-231 and 4T1 cells and SAHA not only enhances radiosensitivity but also suppresses lung metastasis in breast cancer.
Abstract: Triple-negative breast cancer (TNBC), defined by the absence of an estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression, is associated with an early recurrence of disease and poor outcome. Furthermore, the majority of deaths in breast cancer patients are from metastases instead of from primary tumors. In this study, MCF-7 (an estrogen receptor-positive human breast cancer cell line), MDA-MB-231 (a human TNBC cell line) and 4T1 (a mouse TNBC cell line) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with suberoylanilide hydroxamic acid (SAHA, an inhibitor of histone deacetylase (HDAC)) and to determine the underlying mechanisms of these effects in vitro and in vivo. We also evaluated the ability of SAHA to inhibit the metastasis of 4T1 cells. We found that IR combined with SAHA showed increased therapeutic efficacy when compared with either treatment alone in MCF-7, MDA-MB-231 and 4T1 cells. Moreover, the combined treatment enhanced DNA damage through the inhibition of DNA repair proteins. The combined treatment was induced primarily through autophagy and ER stress. In an orthotopic breast cancer mouse model, the combination treatment showed a greater inhibition of tumor growth. In addition, SAHA inhibited the migration and invasion abilities of 4T1 cells and inhibited breast cancer cell migration by inhibiting the activity of MMP-9. In an in vivo experimental metastasis mouse model, SAHA significantly inhibited lung metastasis. SAHA not only enhances radiosensitivity but also suppresses lung metastasis in breast cancer. These novel findings suggest that SAHA alone or combined with IR could serve as a potential therapeutic strategy for breast cancer.

Journal ArticleDOI
TL;DR: The novel drug combination of bortezomib and SAHA is highly synergistic in the killing of NPC cells in vitro and in vivo, and the major mechanism of cell death is ROS-driven caspase-dependent apoptosis.
Abstract: A novel drug combination of a proteasome inhibitor, bortezomib, and a histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), was tested in nasopharyngeal carcinoma (NPC), both in vitro and in vivo . Dose-response of different concentrations of bortezomib and SAHA on inhibition of cell proliferation of NPC was determined. Mechanisms of apoptosis and effects on lytic cycle activation of Epstein–Barr virus (EBV) were investigated. Combination of bortezomib and SAHA (bortezomib/SAHA) synergistically induced killing of a panel of NPC cell lines. Pronounced increase in sub-G1, Annexin V–positive, and terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling (TUNEL)–positive cell populations were detected after treatment with bortezomib/SAHA when compared with either drug alone. Concomitantly, markedly augmented proteolytic cleavage of PARP, caspase-3, -7, -8, and -9, reactive oxygen species (ROS) generation, and caspase-8–dependent histone acetylation were observed. ROS scavenger, N -acetyl cysteine, diminished the apoptotic effects of bortezomib/SAHA, whereas caspase inhibitor Z-VAD-FMK significantly suppressed the apoptosis without decreasing the generation of ROS. Bortezomib inhibited SAHA's induction of EBV replication and abrogated production of infectious viral particles in NPC cells. Furthermore, bortezomib/SAHA potently induced apoptosis and suppressed the growth of NPC xenografts in nude mice. In conclusion, the novel drug combination of bortezomib and SAHA is highly synergistic in the killing of NPC cells in vitro and in vivo . The major mechanism of cell death is ROS-driven caspase-dependent apoptosis. Bortezomib antagonizes SAHA's activation of EBV lytic cycle in NPC cells. This study provides a strong basis for clinical testing of the combination drug regimen in patients with NPC. Mol Cancer Ther; 12(5); 747–58. ©2013 AACR .

Journal ArticleDOI
TL;DR: The maximum tolerated dose, dose‐limiting toxicities (DLT), and pharmacokinetic properties of vorinostat, a histone deacetylase (HDAC) inhibitor, when given in combination with temozolomide in children with refractory or recurrent CNS malignancies are estimated.
Abstract: Purpose We conducted a pediatric phase I study to estimate the maximum tolerated dose (MTD), dose-limiting toxicities (DLT), and pharmacokinetic properties of vorinostat, a histone deacetylase (HDAC) inhibitor, when given in combination with temozolomide in children with refractory or recurrent CNS malignancies. Patients and Methods Vorinostat, followed by temozolomide approximately 1 hour later, was orally administered, once daily, for 5 consecutive days every 28 days at three dose levels using the rolling six design. Studies of histone accumulation in peripheral blood mononuclear cells were performed on Day 1 at 0, 6, and 24 hours after vorinostat dosing. Vorinostat pharmacokinetics (PK) and serum MGMT promoter status were also assessed. Results Nineteen eligible patients were enrolled and 18 patients were evaluable for toxicity. There were no DLTs observed at dose level 1 or 2. DLTs occurred in four patients at dose level 3: thrombocytopenia (4), neutropenia (3), and leucopenia (1). Non-dose limiting grade 3 or 4 toxicities related to protocol therapy were also hematologic and included neutropenia, lymphopenia, thrombocytopenia, anemia, and leucopenia. Three patients exhibited stable disease and one patient had a partial response. There was no clear relationship between vorinostat dosage and drug exposure over the dose range studied. Accumulation of acetylated H3 histone in PBMC was observed after administration of vorinostat. Conclusion Five-day cycles of vorinostat in combination with temozolomide are well tolerated in children with recurrent CNS malignancies with myelosuppression as the DLT. The recommended phase II combination doses are vorinostat, 300 mg/m2/day and temozolomide, 150 mg/m2/day. Pediatr Blood Cancer 2013;160:1452–1457. © 2013 Wiley Periodicals, Inc.

Journal ArticleDOI
28 Nov 2013-AIDS
TL;DR: The HDACi entinostat, selective for inhibition of class I HDACs, induced virus expression in latently infected primary CD4+ T cells making this compound an attractive novel option for future clinical trials.
Abstract: Objectives: To compare the potency, toxicity and mechanism of action of multiple histone deacetylase inhibitors (HDACi) in activating HIV production from latency. Design: In-vitro analysis of HDACi in a primary T-cell model of HIV latency and latently infected cell lines. Methods: Latently infected chemokine ligand 19 (CCL19)-treated CD4 T cells and the latently infected cell lines ACH2 and J-Lat were treated with a panel of HDACi, including entinostat, vorinostat, panonbinostat and MCT3. Viral production and cell viability were compared. Expression of cellular HDACs was measured by western blot and PCR. Association of HDACs with the HIV long-terminal repeat (LTR) using latently infected CCL19-treated primary CD4 T cells in the presence and absence of specific HDACi was determined by chromatin immunoprecipitation (ChIP). Results: We demonstrated considerable variation in the potency and toxicity of HDACi in latently infected primary CD4 T cells and cell lines. All HDACi tested activated HIV production in latently infected primary T cells with greatest potency demonstrated with entinostat and vorinostat and greatest toxicity with panobinostat. Following the addition of HDACi in vitro, there were no changes in markers of T-cell activation or expression of the HIV coreceptors chemokine (C-X-C motif) receptor 4 (CXCR4) or chemokine (C-C motif) receptor type 5 (CCR5). ChIP analysis of latently infected CCL19-treated primary CD4 T cells showed binding by HDAC1, HDAC2 and HDAC3 to the LTR with removal of HDAC1 and HDAC2 following treatment with the HDACi vorinostat and HDAC1 only following treatment with entinostat. Conclusion: The HDACi entinostat, selective for inhibition of class I HDACs, induced virus expression in latently infected primary CD4 T cells making this compound an attractive novel option for future clinical trials.

Journal ArticleDOI
16 May 2013-Blood
TL;DR: Findings implicate increased activation of MEK and decreased Bim expression as a resistance mechanism to HDIs, supporting combination of romidepsin with MEK inhibitors in clinical trials.

Journal ArticleDOI
TL;DR: Vorinostat showed effectiveness by normalizing elevated leucocyte and platelet counts, resolving pruritus and significantly reducing splenomegaly, but was associated with significant side effects resulting in a high discontinuation rate.
Abstract: Inhibition of histone deacetylases may be an important target in patients with myeloproliferative neoplasms. This investigator-initiated, non-randomized, open-label phase II multi-centre study incl ...

Journal ArticleDOI
TL;DR: Histone modification is an important epigenetic mechanism regulating incision-induced nociceptive sensitization and the spinal CXCR2 signaling pathway is one epigenetically regulated pathway controlling early and latent sensitization after incision.
Abstract: Background The regulation of gene expression in nociceptive pathways contributes to the induction and maintenance of pain sensitization Histone acetylation is a key epigenetic mechanism controlling chromatin structure and gene expression Chemokine CC motif receptor 2 (CXCR2) is a proinflammatory receptor implicated in neuropathic and inflammatory pain and is known to be regulated by histone acetylation in some settings The authors sought to investigate the role of histone acetylation on spinal CXCR2 signaling after incision Methods Groups of 5-8 mice underwent hind paw incision Suberoylanilide hydroxamic acid and anacardic acid were used to inhibit histone deacetylase and histone acetyltransferase, respectively Behavioral measures of thermal and mechanical sensitization as well as hyperalgesic priming were used Both message RNA quantification and chromatin immunoprecipitation analysis were used to study the regulation of CXCR2 and ligand expression Finally, the selective CXCR2 antagonist SB225002 was administered intrathecally to reveal the function of spinal CXCR2 receptors after hind paw incision Results Suberoylanilide hydroxamic acid significantly exacerbated mechanical sensitization after incision Conversely, anacardic acid reduced incisional sensitization and also attenuated incision-induced hyperalgesic priming Overall, acetylated histone H3 at lysine 9 was increased in spinal cord tissues after incision, and enhanced association of acetylated histone H3 at lysine 9 with the promoter regions of CXCR2 and keratinocyte-derived chemokine (CXCL1) was observed as well Blocking CXCR2 reversed mechanical hypersensitivity after hind paw incision Conclusions Histone modification is an important epigenetic mechanism regulating incision-induced nociceptive sensitization The spinal CXCR2 signaling pathway is one epigenetically regulated pathway controlling early and latent sensitization after incision

Journal ArticleDOI
TL;DR: The discovery of Mcl-1 as a dominant and tissue-specific survival factor in SCC is uncovered, providing a roadmap for a new therapeutic approach and providing a biochemical rationale and predictive markers for the application of this therapeutic combination in S CC.
Abstract: Effective targeted therapeutics for squamous cell carcinoma (SCC) are lacking. Here we uncover Mcl-1 as a dominant and tissue-specific survival factor in SCC, providing a roadmap for a new therapeutic approach. Treatment with the HDAC inhibitor vorinostat regulates Bcl-2 family member expression to disable the Mcl-1 axis and thereby induce apoptosis in SCC cells. Although Mcl-1 dominance renders SCC cells resistant to the BH3 mimetic ABT-737, vorinostat primes them for sensitivity to ABT-737 by shuttling Bim from Mcl-1 to Bcl-2/Bcl-xl, resulting in dramatic synergy for this combination and sustained tumor regression in vivo. Moreover, somatic FBW7 mutation in SCC is associated with stabilized Mcl-1 and high Bim levels, resulting in a poor response to standard chemotherapy but a robust response to HDAC inhibitors and enhanced synergy with combination vorinostat/ABT-737. Collectively, our findings provide a biochemical rationale and predictive markers for the application of this therapeutic combination in SCC.

Journal ArticleDOI
TL;DR: It is demonstrated that the combination of Btz with the histone deacetylase (HDAC) inhibitor suberoylanilidehydroxamic acid (SAHA) potently reactivates KSHV lytic replication and induces PEL cell death, resulting in significantly prolonged survival of PEL-bearing mice.
Abstract: Primary effusion lymphoma (PEL) is a rare form of aggressive B cell lymphoma caused by Kaposi’s sarcoma-associated herpesvirus (KSHV). Current chemotherapy approaches result in dismal outcomes, and there is an urgent need for new PEL therapies. Previously, we established, in a direct xenograft model of PEL-bearing immune-compromised mice, that treatment with the proteasome inhibitor, bortezomib (Btz), increased survival relative to that after treatment with doxorubicin. Herein, we demonstrate that the combination of Btz with the histone deacetylase (HDAC) inhibitor suberoylanilidehydroxamic acid (SAHA, also known as vorinostat) potently reactivates KSHV lytic replication and induces PEL cell death, resulting in significantly prolonged survival of PEL-bearing mice. Importantly, Btz blocked KSHV late lytic gene expression, terminally inhibiting the full lytic cascade and production of infectious virus in vivo. Btz treatment led to caspase activation and induced DNA damage, as evidenced by the accumulation of phosphorylated γH2AX and p53. The addition of SAHA to Btz treatment was synergistic, as SAHA induced early acetylation of p53 and reduced interaction with its negative regulator MDM2, augmenting the effects of Btz. The eradication of KSHV-infected PEL cells without increased viremia in mice provides a strong rationale for using the proteasome/HDAC inhibitor combination therapy in PEL.

Journal ArticleDOI
TL;DR: These findings suggest that vorinostat ameliorated the impaired fear extinction in SPS rats, and this effect was associated with an increase in histone acetylation and thereby enhancement of NR2B and CaMKII in the hippocampus.
Abstract: Given that impairment of fear extinction plays a pivotal role in the pathophysiology of posttraumatic stress disorder (PTSD), drugs that facilitate fear extinction may be useful as novel treatments for PTSD. Histone deacetylase (HDAC) inhibitors have recently been shown to enhance fear extinction in animal studies. Using a single prolonged stress (SPS) paradigm, an animal model of PTSD, we examined whether the HDAC inhibitor vorinostat can facilitate fear extinction in rats, and elucidated the mechanism by which vorinostat enhanced fear extinction, focusing on the N-methyl-d-aspartate (NMDA) receptor signals in the hippocampus. Seven days after SPS, rats received contextual fear conditioning, followed by 2-day extinction training. Vorinostat was intraperitoneally injected immediately after second extinction training session. Contextual fear response was assessed 24 h after vorinostat injection. Hippocampal tissues were dissected 2 h after vorinostat injection. The levels of mRNA and protein tested were measured by RT-PCR or western blotting, respectively. Systemic administration of vorinostat with extinction training significantly enhanced fear extinction in SPS rats as compared with the controls. Furthermore, vorinostat enhanced the hippocampal levels of NR2B and calcium/calmodulin kinase II (CaMKII) α and β proteins, accompanied by increases in the levels of acetylated histone H3 and H4. These findings suggest that vorinostat ameliorated the impaired fear extinction in SPS rats, and this effect was associated with an increase in histone acetylation and thereby enhancement of NR2B and CaMKII in the hippocampus. Our results may provide new insight into the molecular and therapeutic mechanisms of PTSD.

Journal ArticleDOI
TL;DR: The significantly enhanced antitumor activity that results from the combination of bortezomib and HDACIs offers promise as a novel treatment for glioma patients.
Abstract: Glioblastomas are invasive tumors with poor prognosis despite current therapies. Histone deacetylase inhibitors (HDACIs) represent a class of agents that can modulate gene expression to reduce tumor growth, and we and others have noted some antiglioma activity from HDACIs, such as vorinostat, although insufficient to warrant use as monotherapy. We have recently demonstrated that proteasome inhibitors, such as bortezomib, dramatically sensitized highly resistant glioma cells to apoptosis induction, suggesting that proteasomal inhibition may be a promising combination strategy for glioma therapeutics. In this study, we examined whether bortezomib could enhance response to HDAC inhibition in glioma cells. Although primary cells from glioblastoma multiforme (GBM) patients and established glioma cell lines did not show significant induction of apoptosis with vorinostat treatment alone, the combination of vorinostat plus bortezomib significantly enhanced apoptosis. The enhanced efficacy was due to proapoptotic mitochondrial injury and increased generation of reactive oxygen species. Our results also revealed that combination of bortezomib with vorinostat enhanced apoptosis by increasing Mcl-1 cleavage, Noxa upregulation, Bak and Bax activation, and cytochrome c release. Further downregulation of Mcl-1 using shRNA enhanced cell killing by the bortezomib/vorinostat combination. Vorinostat induced a rapid and sustained phosphorylation of histone H2AX in primary GBM and T98G cells, and this effect was significantly enhanced by co-administration of bortezomib. Vorinostat/bortezomib combination also induced Rad51 downregulation, which plays an important role in the synergistic enhancement of DNA damage and apoptosis. The significantly enhanced antitumor activity that results from the combination of bortezomib and HDACIs offers promise as a novel treatment for glioma patients.